DOI:10.3969/j. issn. 1003 - 9511.2013.03.010

基于 CGE 模型的水价变动对国民经济各部门价格的影响

刘婷婷,张玲玲

(河海大学公共管理学院,江苏南京 210098)

摘要:针对目前我国水价改革现状,依据我国 2007 年投入产出表以及统计年鉴编制了社会核算矩阵表,将水资源作为生产要素,改进 CGE 模型中生产模块,分析水价改革对国民经济各部门价格以及总产出的影响。通过提高水的生产和供应部门的价格来模拟水价的变化,利用 GAMS 工具作为建模和求解平台,具体模拟了水价提高 10% 和 15% 两种情景。结果显示:水价提高对国民经济部门价格有一定影响,通过适当提高水价,可以有效地促进高耗水行业节约用水。

关键词:水价变动;国民经济;社会核算矩阵;CGE 模型

中图分类号:F407.9

文献标识码:A

文章编号:1003-9511(2013)03-0040-04

水价政策是影响供水行业产业化发展的基础性 经济政策,也是水资源政策体系的重要组成部 分^[1]。随着我国经济的不断发展,水价政策也在不 断走向科学化。近年来,按照中央的统一部署,各地 积极推进水价改革,不断完善水价形成机制,取得了 显著成效。但是水价政策不仅对供水行业自身产生 直接影响,而且水价将影响国民经济的其他部门,因 此,为了更好地分析水价对整个国民经济的影响,需 要对水价进行定量的模拟与计算。

可计算一般均衡(computable general equilibrium,CGE)模型是分析政策措施变化所产生效果的理想工具,在中长期的宏观经济政策分析以及传统的微观经济分析等方面,发挥着重要的作用^[2]。自20世纪60年代以来,CGE模型在发达国家得到了广泛研究与应用,已成为政策模拟的有效工具。由于我国经济统计数据不足等原因,国内对 CGE模型的研究比较晚,主要研究体现在经济体制改革和环境保护等方面。与经济学中其他常用的分析方法相比,CGE模型最显著的特点就是将整个经济系统作为研究对象,全面考察系统中各种商品和要素的供给、需求和供求变化关系^[3],所以,该模型同样适合水价政策模拟分析。目前,在国内运用 CGE模型研究水价问题的文献比较少,主要有:沈大军等^[4]应

用 CGE 模型对水价进行了开创性的研究,采用间接的方法,得出邯郸市水的边际价格。赵永^[5]在评述国内外水价研究方法的基础上,探讨了 CGE 模型框架下微观—宏观相结合的水价研究方法;严冬等^[6]以北京市为例,通过改进 CGE 模型的收入方程,评价水价改革对价格水平、生产、用水量和水费收入的影响;王勇等^[7]引入 CGE 模型作为分析工具,以黑河流域的张掖市为例,计算了工农业生产的边际水价,并考察了供水变化对该地区社会、经济发展产生的影响。

本文根据改进的 CGE 模型与水价政策理论,研究水价变动对国民经济各部门的影响,为科学制定水价政策提供参考。

1 数据基础

社会核算矩阵(Social Accounting Matrix, SAM)与国民经济核算账户有着密切的关系,是 CGE 模型的数据基础,它包含了各类交易与社会经济流量的详细信息,是表现社会经济系统各个部分之间相互联系的一种重要形式。表 1 是我国 2007 年描述性 SAM 表。考虑到各生产部门的用水水平不同,其中"活动"和"商品"账户中包含了 21 个部门,这样划分一方面突出水资源需求较大的部门,另一方面与 2007 年投入产出表的部门划分相一致。

基金项目:国家自然科学基金(51109055,51279223);江苏省社会科学基金重点项目(11GLA001);水利部公益性行业科研专项(201201022)

作者简介:刘婷婷(1986—),女,江苏淮安人,硕士研究生,从事水利经济、水利行政管理研究。

投入产出	1 活动	2 商品	3 要素	4 居民	5 企业	6 政府	7 资本账户	8 国外	收入合计
1活动		818 858. 96							818 858. 96
2 商品	552 815. 15			96 552. 62		35 190. 92	112779.84	95 540. 99	892 879. 52
3 要素	227 525. 09								227 525. 09
4 居民			110 047. 30		48 162. 49	5 447. 16			163 656. 95
5 企业			117 477. 79						117 477. 79
6 政府	38 518. 72	1 432. 57		3 185. 58	8 779. 25			-5 635. 00	46 281. 12
7 资本账户				63 918. 76	60 536. 05	5 643. 04		-17 318. 01	112779.84
8 国外		72 587. 98							72 587. 98
支出合计	818 858. 96	892 879. 51	227 525. 09	163 656. 96	117 477. 79	46 281. 12	112779.84	72 587. 98	

注:表1是在中国2007年投入产出表的基础上,结合2008—2011年《中国统计年鉴》和《中国财政年鉴》编制而成。

2 模型结构

水价政策模型主要包括 5 个模块:生产模块、收入和需求模块、价格模块、国际贸易模块、均衡模块。模型采用嵌套的 CES(恒替代弹性)生产函数,模型中部分效用函数以及生产可能性边界的分配函数同样采用 CES 生产函数。

2.1 生产模块

生产模块是通过投入产出的合成关系逐层描述 从初始要素投入到最终合成各部门总产出的过程^[8]。生产函数为三层套嵌,第一层为其他中间投入与增加值的合成,得到部门总产出;第二层为水资源-资本与劳动力的合成,得到增加值部分;第三层为水资源与资本的合成。生产结构图如图 1 所示。

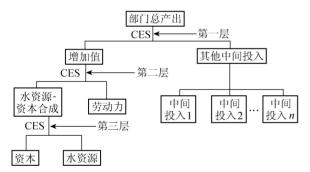


图 1 生产结构

通过构建第三层水资源-资本模型,可得到 CES 函数分解资本-水资源合成需求后,对资本和水资源 合成两项的需求:

$$K_{j}^{d} = \alpha_{j}^{k} \left(\lambda_{j}^{k} \right)^{\sigma_{j}^{kw-1}} \left(\frac{P_{(kw)j}}{\varphi_{i}^{k} \cdot \overline{W}} \right)^{\sigma_{j}^{kw}} Q_{(kw)j}$$
 (1)

$$Q_{(w)j} = \alpha_j^w \left(\frac{P_{(kw)j}}{P_{(w)j}}\right)^{\sigma_j^{kw}} Q_{(kw)j}$$
 (2)

式中: K_j^d 为第j部门对资本的需求; α_j^k 为第j部门中资本需求的 CES 份额参数; λ_j^k 为第j部门的资本利用效率; $P_{(kw)j}$ 为第j部门资本一水资源合成价格; φ_j^k 为资本价格调整系数; $Q_{(kw)j}$ 为第j部门对资本一水资

源合成的需求; $Q_{(w)j}$ 为第j部门对水资源的需求; α_j^w 为第j部门中水资源需求的 CES 份额参数; $P_{(w)j}$ 为第j部门水资源价格; σ_j^{kw} 为资本和水资源之间的替代弹性, $\sigma_j^{kw} = \frac{1}{1-\rho_j^{kw}}$; ρ 为与替代弹性有关的 CES 函数系数; \overline{W} 为资本的平均价格。

2.2 收入和需求模块

收入和需求模块主要分析居民、企业、政府部门的收入和分配情况,包括居民的总收入、居民的可支配收入、企业总收入、政府总收入、居民对各部门商品的需求、政府对各部门商品的需求、企业对商品的投资需求、居民储蓄、企业储蓄和政府储蓄。

2.3 价格模块

价格模块是 CGE 模型的核心,对商品和要素的市场调节起着决定性作用。在定义价格的过程中,价格模型采用了国际贸易理论的"小国假设",认为研究一国的对外贸易量在国际市场贸易量中所占的份额非常小,它的变化不会引起国际市场商品价格的变动^[9],所以商品的进出口价格维持恒定。

2.3.1 第一层价格函数

第一层为部门单位产出的生产价格函数,即由 其他中间投入与资本-水资源-劳动力通过 CES 而 合成的价格。

$$P_{(x)j} = \left[\alpha_j^{nd} (P_{(nd)j})^{1-\sigma_j^p} + \alpha_j^{kvl} (P_{(kwl)j})^{1-\sigma_j^p} \right]^{\frac{1}{1-\sigma_j^p}}$$
(3)

式中: α_j^{nd} 为第j部门中其他中间投入合成需求的 CES 份额参数; $P_{(nd)j}$ 为第j部门对其他中间投入合成价格; α_j^{kwl} 为第j部门中资本-水资源合成与劳动力之间的替代弹性; $P_{(kwl)j}$ 为第j部门资本-水资源-劳动力合成价格; σ_j^p 为第j部门中资本-水资源-劳动力合成与其他中间投入合成之间的替代弹性。

2.3.2 第二层价格函数

第二层价格函数包含其他中间投入合成价格和 资本-水资源-劳动力合成价格。

$$P_{(nd)j} = \sum_{nw} a_j^{nw} P_{(a)j}$$

$$P_{(kwl)j} = \left[\alpha_j^l \left(\frac{\varphi_j^l \overline{R}}{\lambda_j^l} \right)^{1 - \sigma_j^{kwl}} + \alpha_j^{kw} (P_{(kw)j})^{1 - \sigma_j^{kwl}} \right]^{\frac{1}{1 - \sigma_j^{kwl}}}$$

$$(47)$$

式中: $P_{(a)j}$ 为第j种国内商品与进口商品的阿明顿合成价格; a_j^{nw} 为第j部门对其他中间投入部门的直接消耗系数; α_j^l 为第j部门中劳动力需求的 CES 份额参数; α_j^l 为工资调整系数; λ_j^l 为第j部门的劳动力利用效率; \overline{R} 为劳动力的平均价格; α_j^{nw} 为第j部门中资本—水资源合成需求的 CES 份额参数; σ_j^{nwl} 为第j部门中资本—水资源合成与劳动力之间的替代弹性。

2.3.3 第三层价格函数

第三层函数为资本价格和水资源价格,通过 CES 合成。

$$P_{(kw)j} = \left[\alpha_j^k \left(\frac{\varphi_j^k \overline{W}}{\lambda_j^k}\right)^{1 - \sigma_j^{kw}} + \alpha_j^w (P_{(w)j})^{1 - \sigma_j^{kw}}\right]^{\frac{1}{1 - \sigma_j^{kw}}}$$
(6)

2.3.4 产品国内价格

商品的阿明顿价格,为国内生产产品的国内价格与进口产品的国内价格通过 CES 合成。

 $P_{(a)j} = \left[\alpha_j^{dd} P_{(d)j}^{1-\sigma_j^m} + \alpha_j^m (P_{(m)j})^{1-\sigma_j^m}\right]^{\frac{1}{1-\sigma_j^m}}$ (7) 式中: α_j^{dd} 为对第 j 种国内商品需求的 CES 份额参数; $P_{(d)j}$ 为第 j 部门供国内需求的国内价格; α_j^m 为对第 j 种进口商品需求的 CES 份额参数; $P_{(m)j}$ 为第 j 种进口商品的国内价格; σ_j^m 为第 j 种进口商品与国内商品之间的替代弹性。

2.4 国际贸易模块

国际贸易模块中的国内产品分配采用 CET(常转换弹性)函数形式以及阿明顿假设,假设进口商品与国内商品之间不完全替代,在成本最小化原则下,得出国内市场对国内产品的需求、国内市场对所有产品的需求、各种国内商品对国内市场的供应、各种国内商品对国际市场的供应,从而实现进口和国内商品之间的优化选择。国内产品的分配与需求如图 2 所示。

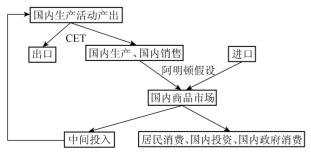


图 2 国内产品的分配与需求

2.5 均衡闭合模块

均衡闭合模块包括国际收支均衡、储蓄投资均衡、产品市场均衡、劳动力市场均衡和资本市场均衡。国际收支均衡,选择汇率外生给定,国外储蓄内生,以保持国际收支平衡的闭合规则;储蓄投资均衡,投资由储蓄决定,经济中所有的储蓄都转化为投资,反映了"储蓄驱动"的新古典闭合;产品市场均衡,即总需求等于总供给,可以通过国内商品的国内价格变动实现市场出清;劳动力市场均衡,假设工资为内生变量,当工资受到经济政策冲击后,经过调整,最终实现资本的充分利用与劳动力市场的充分就业;资本市场均衡,将资本价格假设为内生变量,当资本价格受到经济政策冲击后,企业可通过调整资本存量,实现资本自由流动,从而实现资本的充分利用。

3 模拟结果及分析

根据分析,我国现在的水价只是包括了水的处理价格,而没有包括水资源的价格、污水处理的价格等^[10]。从居民的承受能力角度看,我国水价还有24%~110%的上升空间^[11]。模型设定水价提高10%和15%两种情况,比较分析不同情况下各部门价格以及总产出受到的影响。表2为生产部门的划分。

表 2 生产部门的划分

序号	部门名称	序号	部门名称
A1	农林牧渔业	A12	电力、热力的生产和供应
A2	煤炭采选业	A13	燃气生产和供应
A3	石油和天然气开采业	A14	水的生产和供应
A4	其他采掘业	A15	建筑业
A5	食品制造及烟草加工业	A16	交通运输及仓储和邮政业
A6	纺织业	A17	信息传输、计算机服务和 软件业
A7	石油化工业	A18	批发和零售业
A8	非金属矿物制品业	A19	住宿和餐饮业
A9	金属冶炼及制品业	A20	金融业及房地产业
A10	设备制造业	A21	科教文卫及社会服务业
A11	其他工业		

3.1 模拟结果展示

3.1.1 水价提高 10%

如图 3 所示,当水价提高 10% 时,各部门的价格均有上涨,价格上涨较大的部门有:农林牧渔业 2.1672%,水的生产和供应业 0.963 8%,设备制造业 0.3047%,金属冶炼 0.261 6%,燃气的生产和供应 0.293 6%,纺织业 0.205 8%;价格变动较小的部门有信息传输,计算机服务和软件业 0.095 2%,住宿和餐饮业 0.083 2%,交通运输及仓储和邮政业 0.075 2%,金融业及房地产业 0.057 6%,煤炭采选业 0.053 6%,石油和天然气开采业 0.0410%,电力、

热力的生产和供应 0.0073%。

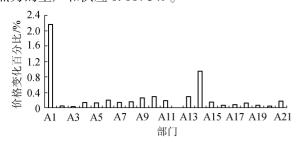


图 3 水价提高 10% 对部门价格的影响

随着部门价格的上升,各部门的总产出有不同程度的变化,如图 4 所示,总体呈下降的趋势,但有个别行业呈上升趋势。部门总产出上升比较明显的是食品制造及烟草加工业上升 0.031 2%,住宿和餐饮业 0.016 3%,金融业及房地产业 0.054 3%;部门总产出下降比较明显的有水的生产和供应-2.197 8%,设备制造业-1.360 3%,建筑业-1.137 0%,其他采掘业-0.236 7%,其他工业-0.342 0%,金属冶炼及制品业-0.152 0%;其他行业也有所下降,但是影响较小,如煤炭采选业,石油和天然气开采业等。

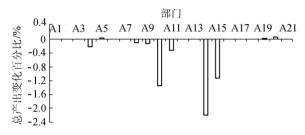


图 4 水价提高 10% 对部门总产出的影响

3.1.2 水价提高15%

在水价提高 15% 的情况下,部门价格变化如图 5 所示,部门价格变化整体呈上升趋势。受到影响较大的部门:农林牧渔业上升了 2.258 3%,水的生产和供应业 1.044 2%,设备制造业 0.418 5%,燃气的生产和供应 0.327 6%,纺织业 0.3145 %;受到影响较小的部门:电力,热力的生产和供应 0.008 3%,金融业及房地产业 0.059 1%,石油和天然气开采业 0.068 3 %,煤炭采选业 0.070 2%,住宿和餐饮业 0.083 2%,交通运输及仓储和邮政业 0.089 2%。

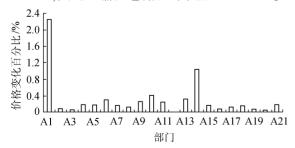


图 5 水价提高 15% 对部门价格的影响

水价变动对部门总产出的影响如图 6,部门总产出整体呈下降的趋势,呈上升趋势是住宿和餐饮业 0.0083%,金融业及房地产业 0.0335%;部门总产出下降比较明显的有水的生产和供应-3.2526%,设备制造业-2.0851%,建筑业-2.8733%,金属治炼及制品业-0.2462%,其他采掘业-0.3830%,其他工业-0.3420%,非金属矿物制品业-0.6274%;其他行业也有所下降,但是影响较小,如纺织业,石油和天然气开采业,科教文卫等。

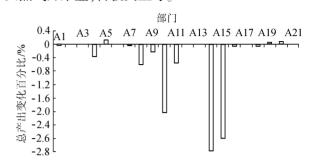


图 6 水价提高 15% 对部门总产出影响

3.2 结果分析

由以上两种方案可以得出:水价的提高对国民 经济各部门价格与总产出有一定影响,不同行业对 水资源的敏感性和依赖性不同。

- a. 水价越高,高耗水行业的部门价格上升就越大,如农林牧渔业(超过2%)、纺织业、设备制造业、金属冶炼等,显示了它们与水供给的高相关性。可见,水价提高可以有效地促进高耗水行业节约使用水资源,在一定程度上有利于促进当地经济产业结构的调整。
- b. 水价提高使部门产出总体呈减少趋势。高 耗水行业建筑、纺织、设备制造业、金属冶炼及制造 业等减少幅度较大,其次为石油和天然气开采业、科 教文卫等减少幅度较小,原因是水价的提高导致生 产成本增加,进而行业总产出减少,同时因产出降 低,对劳动力的需求减少,居民收入降低,使得居民 用水量减少。
- c. 水价的提高有利于节约用水,但是也不能一 味地提高水价。考虑到部门行业性质的不同,如农 林牧渔业对水资源依存性较大,所以不能随便提高 其水价,可实行价格补贴政策,提高农业用水效率; 工业用水方面,对不同行业用水采用不同的征收标 准;生活用水方面,考虑到居民用水承受率以及供水 成本等现实问题,可小幅度提高水价,同时执行城市 与农村不同的征收政策,在审核供水企业运营成本、 强化成本约束的基础上,适当提高城市供水价格。 所以比较本文中的两种方案,水价提(下转第53页)

5 结 语

秦淮河千年流淌,历史悠久,人文底蕴深厚。可 以说,也正是因为有2500年前的秦淮河畔长干里 筑越城,才有了南京建城史,秦淮河伴随古城南京经 历了时代变迁。如今,随着南京经济社会的快速发 展,秦淮河也步入了现代化建设的崭新时代,无论是 从城市防洪保安的高度,还是从流域水资源、环境、 景观等综合功能需求的定位层面来分析,都需要加 快启动实施秦淮东河工程。但也应看到,秦淮东河 工程建设将面临许多难题,如规划衔接、土地利用、 路桥改建、水库新建等许多关键问题的解决,需要行 政力量的强力组织推进,需要大量的工作协调,需要 可靠的经费保障,更需要科技的支撑和创新的办法。 在项目推进中,更要坚持可持续发展的治水思路,以 人水和谐理念为引领,努力打造防洪安全稳固、水资 源调配流畅、水生态健康良好和水环境清新优美的 现代秦淮河。

参考文献:

[1] 李原园,郦建强,李宗礼,等. 河湖水系连通研究的若干

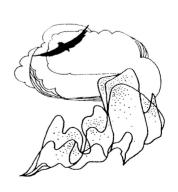
问题与挑战[J]. 资源科学, 2011, 33(3): 386-391.

- [2] 陈雷. 全面贯彻落实党的十八大精神,努力谱写民生水利发展新篇章:在 2013 年全国水利厅局长会议上的讲话[J]. 中国水利,2013(1):1-6,11.
- [3] 严黎,吴门伍,李杰,密西西比河的防洪经验及其启示 [J]. 中国水利,2010(05):56-58.
- [4] 江苏省水利勘测设计研究院有限公司. 秦淮河流域防洪规划[R]. 南京: 江苏省水利厅, 2008.
- [5] 童朝锋,岳亮亮,郝嘉凌,等.南京市外秦淮河水质模拟及引调水效果[J].水资源保护,2012,28(6);49-54.
- [6] 南京市水利局,南京市水利规划设计院有限责任公司. 南京城市防洪规划(2011—2020)[R].南京:南京市水利局,2012.
- [7] 河海大学,南京市水利局.南京市水资源综合规划[R]. 南京:南京市水利局,2010.
- [8] 南京市水利局,南京市水利规划设计院有限责任公司. 秦淮东河工程规划方案[R].南京:南京市水利局, 2010.
- [9] 河海大学,南京市水利局.秦淮河流域洪水计算[R].南京:南京市水利局,2012.

(收稿日期:2012-12-20 编辑:张志琴)

(上接第43页)

高 10% 更合理,同时需要把握好城市水价改革的机会,科学有效的利用成本监审办法来完善水价定价机制。


在今后的水价研究中,还需要不断改进 CGE 模型结构以及 SAM 表编制方法,亦可编制动态的 CGE 模型,从而得到更全面的水价政策,值得进一步研究。

参考文献:

- [1] 温桂芳,刘喜梅. 深化水价改革:全面推进与重点深入 [J]. 财贸经济,2006(4):41-42.
- [2] 樊明太,郑玉歆,马纲. 中国 CGE 模型:基本结构及相 关应用问题(下)[J]. 数量经济技术研究,1998(12): 28-30.
- [3] 赵永,王劲峰. 经济分析 CGE 模型与应用[M]. 北京: 中国经济出版社,2008.
- [4] 沈大军,梁瑞驹,王浩,等.水价理论与实践[M].北京: 科学出版社,1999.
- [5] 赵永. CGE 模型框架下微观:宏观相结合的水价研究方法探讨[J]. 水利经济,2010,28(5):38-40.
- [6] 严冬,周建中,王修贵. 利用 CGE 模型评价水价改革的 影响力:以北京市为例[J]. 中国人口·资源与环境, 2007,17(5):70-74.

- [7] 王勇,肖洪浪. 基于 CGE 模型的张掖市水资源利用研究[J]. 干旱区研究,2008,25(1):28-33.
- [8]马明. 基于 CGE 模型的水资源短缺对国民经济的影响研究[D]. 北京:中国科学院地理科学与资源研究所, 2001.
- [9] 张欣. 可计算一般均衡模型的基本原理与编程[M]. 上海: 上海人民出版社, 2010.
- [10] 王浩,阮本清,沈大军.面向可持续发展的水价理论与 实践[M].北京:科学出版社,2003.
- [11] 王铮, 薛俊波. 经济发展政策模拟分析的 CGE 技术 [M]. 北京: 科学出版社, 2010.

(收稿日期:2012-12-10 编辑:张志琴)

