首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 72 毫秒
1.
We model the volatility of a single risky asset using a multifactor (matrix) Wishart affine process, recently introduced in finance by Gourieroux and Sufana. As in standard Duffie and Kan affine models the pricing problem can be solved through the Fast Fourier Transform of Carr and Madan. A numerical illustration shows that this specification provides a separate fit of the long-term and short-term implied volatility surface and, differently from previous diffusive stochastic volatility models, it is possible to identify a specific factor accounting for the stochastic leverage effect, a well-known stylized fact of the FX option markets analysed by Carr and Wu.  相似文献   

2.
Alizadeh, Brandt, and Diebold [2002. Journal of Finance 57, 1047–1091] propose estimating stochastic volatility models by quasi-maximum likelihood using data on the daily range of the log asset price process. We suggest a related Bayesian procedure that delivers exact likelihood based inferences. Our approach also incorporates data on the daily return and accommodates a nonzero drift. We illustrate through a Monte Carlo experiment that quasi-maximum likelihood using range data alone is remarkably close to exact likelihood based inferences using both range and return data.  相似文献   

3.
Volatility in financial time series is mainly analysed through two classes of models; the generalized autoregressive conditional heteroscedasticity (GARCH) models and the stochastic volatility (SV) ones. GARCH models are straightforward to estimate using maximum-likelihood techniques, while SV models require more complex inferential and computational tools, such as Markov Chain Monte Carlo (MCMC). Hence, although provided with a series of theoretical advantages, SV models are in practice much less popular than GARCH ones. In this paper, we solve the problem of inference for some SV models by applying a new inferential tool, integrated nested Laplace approximations (INLAs). INLA substitutes MCMC simulations with accurate deterministic approximations, making a full Bayesian analysis of many kinds of SV models extremely fast and accurate. Our hope is that the use of INLA will help SV models to become more appealing to the financial industry, where, due to their complexity, they are rarely used in practice.  相似文献   

4.
In this paper, we demonstrate that many stochastic volatility models have the undesirable property that moments of order higher than 1 can become infinite in finite time. As arbitrage-free price computation for a number of important fixed income products involves forming expectations of functions with super-linear growth, such lack of moment stability is of significant practical importance. For instance, we demonstrate that reasonably parametrized models can produce infinite prices for Eurodollar futures and for swaps with floating legs paying either Libor-in-arrears or a constant maturity swap rate. We systematically examine the moment explosion property across a spectrum of stochastic volatility models. We show that lognormal and displaced-diffusion type models are easily prone to moment explosions, whereas CEV-type models (including the so-called SABR model) are not. Related properties such as the failure of the martingale property are also considered.

Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.   相似文献   

5.
In this paper, we propose a heteroskedastic model in discrete time which converges, when the sampling interval goes to zero, towards the complete model with stochastic volatility in continuous time described in Hobson and Rogers (1998). Then, we study its stationarity and moment properties. In particular, we exhibit a specific model which shares many properties with the GARCH(1,1) model, establishing a clear link between the two approaches. We also prove the consistency of the pseudo conditional likelihood maximum estimates for this specific model.Received: December 2002Mathematics Subject Classification: 90A09, 60J60, 62M05JEL Classification: C32This work was supported in part by Dynstoch European network. Thanks to David Hobson for introducing me to these models, and to Valentine Genon-Catalot for numerous and very fruitful discussion on this work. The author is also grateful to Uwe Kuchler for various helpful suggestions, and to two referees and an associate editor for their comments and suggestions.  相似文献   

6.
The profound financial crisis generated by the collapse of Lehman Brothers and the European sovereign debt crisis in 2011 have caused negative values of government bond yields both in the USA and in the EURO area. This paper investigates whether the use of models which allow for negative interest rates can improve option pricing and implied volatility forecasting. This is done with special attention to foreign exchange and index options. To this end, we carried out an empirical analysis on the prices of call and put options on the US S&P 500 index and Eurodollar futures using a generalization of the Heston model in the stochastic interest rate framework. Specifically, the dynamics of the option’s underlying asset is described by two factors: a stochastic variance and a stochastic interest rate. The volatility is not allowed to be negative, but the interest rate is. Explicit formulas for the transition probability density function and moments are derived. These formulas are used to estimate the model parameters efficiently. Three empirical analyses are illustrated. The first two show that the use of models which allow for negative interest rates can efficiently reproduce implied volatility and forecast option prices (i.e. S&P index and foreign exchange options). The last studies how the US three-month government bond yield affects the US S&P 500 index.  相似文献   

7.
    
We apply a bivariate approach to the asset allocation problem for investors seeking to minimize the probability of large losses. It involves modelling the tails of joint distributions using techniques motivated by extreme value theory. We compare results with a corresponding univariate approach using simulated and financial data. Through an examination of a simulated and real financial data set we show that the estimated risks using the bivariate and univariate approaches are in close agreement for a wide range of losses and allocations. This is important since the bivariate approach is significantly more computationally expensive. We therefore suggest that the univariate approach be used for the typical level of loss that an investor may want to guard against. This univariate approach is effective even if there are more than two assets. The software written in support of this work is available on demand and we describe its use in the appendix.  相似文献   

8.
In recent times, hybrid underlying models have become an industry standard for the pricing of derivatives and other problems in finance. This paper chooses a hybrid stochastic and local volatility model to evaluate an equity-linked annuity (ELA), which is a sort of tax-deferred annuity whose credited interest is linked to an equity index. The stochastic volatility component of the hybrid model is driven by a fast mean-reverting diffusion process while the local volatility component is given by the constant elasticity of variance (CEV) model. Since contracts of the ELA usually have long maturities over 10 years, a slowly moving factor in the stochastic volatility of stock index is expected to play a significant role in the valuation of the ELA, and thus, it is added to the aforementioned model. Based on this multiscale hybrid model, an analytic approximate formula is obtained for the price of a European option in terms of the CEV probability density function and then the result is applied to the value of the point-to-point ELA. The formula leads to the dependence structure of the ELA price on the fast and slow scale stochastic volatility and the elasticity of variance.  相似文献   

9.
We study the parametric problem of estimating the drift coefficient in a stochastic volatility model , where Y is a log price process and V the volatility process. Assuming that one can recover the volatility, precisely enough, from the observation of the price process, we construct an efficient estimator for the drift parameter of the diffusion V. As an application we present the efficient estimation based on the discrete sampling with δ n →0 and n δ n →∞. We show that our setup is general enough to cover the case of ‘microstructure noise’ for the price process as well.   相似文献   

10.
    
We estimate the daily integrated variance and covariance of stock returns using high-frequency data in the presence of jumps, market microstructure noise and non-synchronous trading. For this we propose jump robust two time scale (co)variance estimators and verify their reduced bias and mean square error in simulation studies. We use these estimators to construct the ex-post portfolio realized volatility (RV) budget, determining each portfolio component’s contribution to the RV of the portfolio return. These RV budgets provide insight into the risk concentration of a portfolio. Furthermore, the RV budgets can be directly used in a portfolio strategy, called the equal-risk-contribution allocation strategy. This yields both a higher average return and lower standard deviation out-of-sample than the equal-weight portfolio for the stocks in the Dow Jones Industrial Average over the period October 2007–May 2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号