首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Short-term forecasting of crime   总被引:2,自引:0,他引:2  
The major question investigated is whether it is possible to accurately forecast selected crimes 1 month ahead in small areas, such as police precincts. In a case study of Pittsburgh, PA, we contrast the forecast accuracy of univariate time series models with naïve methods commonly used by police. A major result, expected for the small-scale data of this problem, is that average crime count by precinct is the major determinant of forecast accuracy. A fixed-effects regression model of absolute percent forecast error shows that such counts need to be on the order of 30 or more to achieve accuracy of 20% absolute forecast error or less. A second major result is that practically any model-based forecasting approach is vastly more accurate than current police practices. Holt exponential smoothing with monthly seasonality estimated using city-wide data is the most accurate forecast model for precinct-level crime series.  相似文献   

2.
This work presents key insights on the model development strategies used in our cross-learning-based retail demand forecast framework. The proposed framework outperforms state-of-the-art univariate models in the time series forecasting literature. It has achieved 17th position in the accuracy track of the M5 forecasting competition, which is among the top 1% of solutions.  相似文献   

3.
Many businesses and industries require accurate forecasts for weekly time series nowadays. However, the forecasting literature does not currently provide easy-to-use, automatic, reproducible and accurate approaches dedicated to this task. We propose a forecasting method in this domain to fill this gap, leveraging state-of-the-art forecasting techniques, such as forecast combination, meta-learning, and global modelling. We consider different meta-learning architectures, algorithms, and base model pools. Based on all considered model variants, we propose to use a stacking approach with lasso regression which optimally combines the forecasts of four base models: a global Recurrent Neural Network (RNN) model, Theta, Trigonometric Box–Cox ARMA Trend Seasonal (TBATS), and Dynamic Harmonic Regression ARIMA (DHR-ARIMA), as it shows the overall best performance across seven experimental weekly datasets on four evaluation metrics. Our proposed method also consistently outperforms a set of benchmarks and state-of-the-art weekly forecasting models by a considerable margin with statistical significance. Our method can produce the most accurate forecasts, in terms of mean sMAPE, for the M4 weekly dataset among all benchmarks and all original competition participants.  相似文献   

4.
This paper evaluates the performances of prediction intervals generated from alternative time series models, in the context of tourism forecasting. The forecasting methods considered include the autoregressive (AR) model, the AR model using the bias-corrected bootstrap, seasonal ARIMA models, innovations state space models for exponential smoothing, and Harvey’s structural time series models. We use thirteen monthly time series for the number of tourist arrivals to Hong Kong and Australia. The mean coverage rates and widths of the alternative prediction intervals are evaluated in an empirical setting. It is found that all models produce satisfactory prediction intervals, except for the autoregressive model. In particular, those based on the bias-corrected bootstrap perform best in general, providing tight intervals with accurate coverage rates, especially when the forecast horizon is long.  相似文献   

5.
This paper introduces a novel meta-learning algorithm for time series forecast model performance prediction. We model the forecast error as a function of time series features calculated from historical time series with an efficient Bayesian multivariate surface regression approach. The minimum predicted forecast error is then used to identify an individual model or a combination of models to produce the final forecasts. It is well known that the performance of most meta-learning models depends on the representativeness of the reference dataset used for training. In such circumstances, we augment the reference dataset with a feature-based time series simulation approach, namely GRATIS, to generate a rich and representative time series collection. The proposed framework is tested using the M4 competition data and is compared against commonly used forecasting approaches. Our approach provides comparable performance to other model selection and combination approaches but at a lower computational cost and a higher degree of interpretability, which is important for supporting decisions. We also provide useful insights regarding which forecasting models are expected to work better for particular types of time series, the intrinsic mechanisms of the meta-learners, and how the forecasting performance is affected by various factors.  相似文献   

6.
In this article we include dependency structures for electricity price forecasting and forecasting evaluation. We work with off-peak and peak time series from the German-Austrian day-ahead price; hence, we analyze bivariate data. We first estimate the mean of the two time series, and then in a second step we estimate the residuals. The mean equation is estimated by ordinary least squares and the elastic net, and the residuals are estimated by maximum likelihood. Our contribution is to include a bivariate jump component in a mean reverting jump diffusion model in the residuals. The models’ forecasts are evaluated with use of four different criteria, including the energy score to measure whether the correlation structure between the time series is properly included. It is observed that the models with bivariate jumps provide better results with the energy score, which means that it is important to consider this structure to properly forecast correlated time series.  相似文献   

7.
Abstract This paper unifies two methodologies for multi‐step forecasting from autoregressive time series models. The first is covered in most of the traditional time series literature and it uses short‐horizon forecasts to compute longer‐horizon forecasts, while the estimation method minimizes one‐step‐ahead forecast errors. The second methodology considers direct multi‐step estimation and forecasting. In this paper, we show that both approaches are special (boundary) cases of a technique called partial least squares (PLS) when this technique is applied to an autoregression. We outline this methodology and show how it unifies the other two. We also illustrate the practical relevance of the resultant PLS autoregression for 17 quarterly, seasonally adjusted, industrial production series. Our main findings are that both boundary models can be improved by including factors indicated from the PLS technique.  相似文献   

8.
Accurate solar forecasts are necessary to improve the integration of solar renewables into the energy grid. In recent years, numerous methods have been developed for predicting the solar irradiance or the output of solar renewables. By definition, a forecast is uncertain. Thus, the models developed predict the mean and the associated uncertainty. Comparisons are therefore necessary and useful for assessing the skill and accuracy of these new methods in the field of solar energy.The aim of this paper is to present a comparison of various models that provide probabilistic forecasts of the solar irradiance within a very strict framework. Indeed, we consider focusing on intraday forecasts, with lead times ranging from 1 to 6 h. The models selected use only endogenous inputs for generating the forecasts. In other words, the only inputs of the models are the past solar irradiance data. In this context, the most common way of generating the forecasts is to combine point forecasting methods with probabilistic approaches in order to provide prediction intervals for the solar irradiance forecasts. For this task, we selected from the literature three point forecasting models (recursive autoregressive and moving average (ARMA), coupled autoregressive and dynamical system (CARDS), and neural network (NN)), and seven methods for assessing the distribution of their error (linear model in quantile regression (LMQR), weighted quantile regression (WQR), quantile regression neural network (QRNN), recursive generalized autoregressive conditional heteroskedasticity (GARCHrls), sieve bootstrap (SB), quantile regression forest (QRF), and gradient boosting decision trees (GBDT)), leading to a comparison of 20 combinations of models.None of the model combinations clearly outperform the others; nevertheless, some trends emerge from the comparison. First, the use of the clear sky index ensures the accuracy of the forecasts. This derived parameter permits time series to be deseasonalized with missing data, and is also a good explanatory variable of the distribution of the forecasting errors. Second, regardless of the point forecasting method used, linear models in quantile regression, weighted quantile regression and gradient boosting decision trees are able to forecast the prediction intervals accurately.  相似文献   

9.
Providing forecasts for ultra-long time series plays a vital role in various activities, such as investment decisions, industrial production arrangements, and farm management. This paper develops a novel distributed forecasting framework to tackle the challenges of forecasting ultra-long time series using the industry-standard MapReduce framework. The proposed model combination approach retains the local time dependency. It utilizes a straightforward splitting across samples to facilitate distributed forecasting by combining the local estimators of time series models delivered from worker nodes and minimizing a global loss function. Instead of unrealistically assuming the data generating process (DGP) of an ultra-long time series stays invariant, we only make assumptions on the DGP of subseries spanning shorter time periods. We investigate the performance of the proposed approach with AutoRegressive Integrated Moving Average (ARIMA) models using the real data application as well as numerical simulations. Our approach improves forecasting accuracy and computational efficiency in point forecasts and prediction intervals, especially for longer forecast horizons, compared to directly fitting the whole data with ARIMA models. Moreover, we explore some potential factors that may affect the forecasting performance of our approach.  相似文献   

10.
Understanding changes in the frequency, severity, and seasonality of daily temperature extremes is important for public policy decisions regarding heat waves and cold snaps. A heat wave is sometimes defined in terms of both the daily minimum and maximum temperature, which necessitates the generation of forecasts of their joint distribution. In this paper, we develop time series models with the aim of providing insight and producing forecasts of the joint distribution that can challenge the accuracy of forecasts based on ensemble predictions from a numerical weather prediction model. We use ensemble model output statistics to recalibrate the raw ensemble predictions for the marginal distributions, with ensemble copula coupling used to capture the dependency between the marginal distributions. In terms of time series modelling, we consider a bivariate VARMA-MGARCH model. We use daily Spanish data recorded over a 65-year period, and find that, for the 5-year out-of-sample period, the recalibrated ensemble predictions outperform the time series models in terms of forecast accuracy.  相似文献   

11.
Global forecasting models (GFMs) that are trained across a set of multiple time series have shown superior results in many forecasting competitions and real-world applications compared with univariate forecasting approaches. One aspect of the popularity of statistical forecasting models such as ETS and ARIMA is their relative simplicity and interpretability (in terms of relevant lags, trend, seasonality, and other attributes), while GFMs typically lack interpretability, especially relating to particular time series. This reduces the trust and confidence of stakeholders when making decisions based on the forecasts without being able to understand the predictions. To mitigate this problem, we propose a novel local model-agnostic interpretability approach to explain the forecasts from GFMs. We train simpler univariate surrogate models that are considered interpretable (e.g., ETS) on the predictions of the GFM on samples within a neighbourhood that we obtain through bootstrapping, or straightforwardly as the one-step-ahead global black-box model forecasts of the time series which needs to be explained. After, we evaluate the explanations for the forecasts of the global models in both qualitative and quantitative aspects such as accuracy, fidelity, stability, and comprehensibility, and are able to show the benefits of our approach.  相似文献   

12.
It has long been known that combination forecasting strategies produce superior out-of-sample forecasting performances. In the M4 forecasting competition, a very simple forecast combination strategy achieved third place on yearly time series. An analysis of the ensemble model and its component models suggests that the competitive accuracy comes from avoiding poor forecasts, rather than from beating the best individual models. Moreover, the simple ensemble model can be fitted very quickly, can easily scale horizontally with additional CPU cores or a cluster of computers, and can be implemented by users very quickly and easily. This approach might be of particular interest to users who need accurate yearly forecasts without being able to spend significant time, resources, or expertise on tuning models. Users of the R statistical programming language can access this modeling approach using the “forecastHybrid” package.  相似文献   

13.
The familiar concept of cointegration enables us to determine whether or not there is a long-run relationship between two integrated time series. However, this may not capture short-run effects such as seasonality. Two series which display different seasonal effects can still be cointegrated. Seasonality may arise independently of the long-run relationship between two time series or, indeed, the long-run relationship may itself be seasonal. The market for recycled ferrous scrap displays these features: the US and UK scrap prices are cointegrated, yet the local markets exhibit different forms of seasonality. The paper addresses the problem of using both cointegrating and seasonal relationships in forecasting time series through the use of periodic transfer function models. We consider the problems of testing for cointegration between series with differing seasonal patterns and develop a periodic transfer function model for the US and UK scrap markets. Forecast comparisons with other time series models suggest that forecasting efficiency may be improved by allowing for periodicity but that such improvement is by no means guaranteed. The correct specification of the periodic component of the model is critical for forecast accuracy.  相似文献   

14.
Forecast combination is a well-established and well-tested approach for improving the forecasting accuracy. One beneficial strategy is to use constituent forecasts that have diverse information. In this paper we consider the idea of diversity being accomplished by using different time aggregations. For example, we could create a yearly time series from a monthly time series and produce forecasts for both, then combine the forecasts. These forecasts would each be tracking the dynamics of different time scales, and would therefore add diverse types of information. A comparison of several forecast combination methods, performed in the context of this setup, shows that this is indeed a beneficial strategy and generally provides a forecasting performance that is better than the performances of the individual forecasts that are combined.As a case study, we consider the problem of forecasting monthly tourism numbers for inbound tourism to Egypt. Specifically, we consider 33 individual source countries, as well as the aggregate. The novel combination strategy also produces a generally improved forecasting accuracy.  相似文献   

15.
We present new Bayesian methodology for consumer sales forecasting. Focusing on the multi-step-ahead forecasting of daily sales of many supermarket items, we adapt dynamic count mixture models for forecasting individual customer transactions, and introduce novel dynamic binary cascade models for predicting counts of items per transaction. These transaction–sales models can incorporate time-varying trends, seasonality, price, promotion, random effects and other outlet-specific predictors for individual items. Sequential Bayesian analysis involves fast, parallel filtering on sets of decoupled items, and is adaptable across items that may exhibit widely-varying characteristics. A multi-scale approach enables information to be shared across items with related patterns over time in order to improve prediction, while maintaining the scalability to many items. A motivating case study in many-item, multi-period, multi-step-ahead supermarket sales forecasting provides examples that demonstrate an improved forecast accuracy on multiple metrics, and illustrates the benefits of full probabilistic models for forecast accuracy evaluation and comparison.  相似文献   

16.
汪孔政 《基建优化》2007,28(3):103-104
提出采用组合模型预测建筑物沉降,并以常用的三种建筑物沉降预测模型组成组合模型进行了计算分析,结果表明组合预测模型具有较高的预测精度,值得推广应用.  相似文献   

17.
We propose an automated method for obtaining weighted forecast combinations using time series features. The proposed approach involves two phases. First, we use a collection of time series to train a meta-model for assigning weights to various possible forecasting methods with the goal of minimizing the average forecasting loss obtained from a weighted forecast combination. The inputs to the meta-model are features that are extracted from each series. Then, in the second phase, we forecast new series using a weighted forecast combination, where the weights are obtained from our previously trained meta-model. Our method outperforms a simple forecast combination, as well as all of the most popular individual methods in the time series forecasting literature. The approach achieved second position in the M4 competition.  相似文献   

18.
In this work, we propose a novel framework for density forecast combination by constructing time-varying weights based on time-varying features. Our framework estimates weights in the forecast combination via Bayesian log predictive scores, in which the optimal forecast combination is determined by time series features from historical information. In particular, we use an automatic Bayesian variable selection method to identify the importance of different features. To this end, our approach has better interpretability compared to other black-box forecasting combination schemes. We apply our framework to stock market data and M3 competition data. Based on our structure, a simple maximum-a-posteriori scheme outperforms benchmark methods, and Bayesian variable selection can further enhance the accuracy for both point forecasts and density forecasts.  相似文献   

19.
In this study, we investigated the application of the conformal prediction (CP) concept in the context of short-term electricity price forecasting. In particular, we determined the most important aspects related to the utility of CP, as well as explaining why this simple but highly effective idea has proved useful in other application areas and why its characteristics make it promising for short-term power applications. We compared the performance of CP with various state-of-the-art electricity price forecasting models, such as quantile regression averaging, in an empirical out-of-sample study of three short-term electricity time series. We combined CP with various underlying point forecast models to demonstrate its versatility and behavior under changing conditions. Our findings suggest that CP yields sharp and reliable prediction intervals in short-term power markets. We also inspected the effects of each of the model components to provide path-based guideline regarding how to find the best CP model for each market.  相似文献   

20.
Forecasting researchers, with few exceptions, have ignored the current major forecasting controversy: global warming and the role of climate modelling in resolving this challenging topic. In this paper, we take a forecaster’s perspective in reviewing established principles for validating the atmospheric-ocean general circulation models (AOGCMs) used in most climate forecasting, and in particular by the Intergovernmental Panel on Climate Change (IPCC). Such models should reproduce the behaviours characterising key model outputs, such as global and regional temperature changes. We develop various time series models and compare them with forecasts based on one well-established AOGCM from the UK Hadley Centre. Time series models perform strongly, and structural deficiencies in the AOGCM forecasts are identified using encompassing tests. Regional forecasts from various GCMs had even more deficiencies. We conclude that combining standard time series methods with the structure of AOGCMs may result in a higher forecasting accuracy. The methodology described here has implications for improving AOGCMs and for the effectiveness of environmental control policies which are focussed on carbon dioxide emissions alone. Critically, the forecast accuracy in decadal prediction has important consequences for environmental planning, so its improvement through this multiple modelling approach should be a priority.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号