首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The M5 competition follows the previous four M competitions, whose purpose is to learn from empirical evidence how to improve forecasting performance and advance the theory and practice of forecasting. M5 focused on a retail sales forecasting application with the objective to produce the most accurate point forecasts for 42,840 time series that represent the hierarchical unit sales of the largest retail company in the world, Walmart, as well as to provide the most accurate estimates of the uncertainty of these forecasts. Hence, the competition consisted of two parallel challenges, namely the Accuracy and Uncertainty forecasting competitions. M5 extended the results of the previous M competitions by: (a) significantly expanding the number of participating methods, especially those in the category of machine learning; (b) evaluating the performance of the uncertainty distribution along with point forecast accuracy; (c) including exogenous/explanatory variables in addition to the time series data; (d) using grouped, correlated time series; and (e) focusing on series that display intermittency. This paper describes the background, organization, and implementations of the competition, and it presents the data used and their characteristics. Consequently, it serves as introductory material to the results of the two forecasting challenges to facilitate their understanding.  相似文献   

2.
Financial data often contain information that is helpful for macroeconomic forecasting, while multi-step forecast accuracy benefits from incorporating good nowcasts of macroeconomic variables. This paper considers the usefulness of financial nowcasts for making conditional forecasts of macroeconomic variables with quarterly Bayesian vector autoregressions (BVARs). When nowcasting quarterly financial variables’ values, we find that taking the average of the available daily data and a daily random walk forecast to complete the quarter typically outperforms other nowcasting approaches. Using real-time data, we find gains in out-of-sample forecast accuracy from the inclusion of financial nowcasts relative to unconditional forecasts, with further gains from the incorporation of nowcasts of macroeconomic variables. Conditional forecasts from quarterly BVARs augmented with financial nowcasts rival the forecast accuracy of mixed-frequency dynamic factor models and mixed-data sampling (MIDAS) models.  相似文献   

3.
Forecast combination is a well-established and well-tested approach for improving the forecasting accuracy. One beneficial strategy is to use constituent forecasts that have diverse information. In this paper we consider the idea of diversity being accomplished by using different time aggregations. For example, we could create a yearly time series from a monthly time series and produce forecasts for both, then combine the forecasts. These forecasts would each be tracking the dynamics of different time scales, and would therefore add diverse types of information. A comparison of several forecast combination methods, performed in the context of this setup, shows that this is indeed a beneficial strategy and generally provides a forecasting performance that is better than the performances of the individual forecasts that are combined.As a case study, we consider the problem of forecasting monthly tourism numbers for inbound tourism to Egypt. Specifically, we consider 33 individual source countries, as well as the aggregate. The novel combination strategy also produces a generally improved forecasting accuracy.  相似文献   

4.
We constituted Team “Lee C. Baker”, which won the online tourism forecasting competition. Our forecasts had the smallest MASE for the first part of the competition involving 518 annual time series, and the second smallest MASE for the second part of the competition involving 427 quarterly time series and 366 monthly time series. In this article, we briefly describe the methods we used.  相似文献   

5.
We construct a real-time dataset (FRED-SD) with vintage data for the U.S. states that can be used to forecast both state-level and national-level variables. Our dataset includes approximately 28 variables per state, including labor-market, production, and housing variables. We conduct two sets of real-time forecasting exercises. The first forecasts state-level labor-market variables using five different models and different levels of industrially disaggregated data. The second forecasts a national-level variable exploiting the cross-section of state data. The state-forecasting experiments suggest that large models with industrially disaggregated data tend to have higher predictive ability for industrially diversified states. For national-level data, we find that forecasting and aggregating state-level data can outperform a random walk but not an autoregression. We compare these real-time data experiments with forecasting experiments using final-vintage data and find very different results. Because these final-vintage results are obtained with revised data that would not have been available at the time the forecasts would have been made, we conclude that the use of real-time data is essential for drawing proper conclusions about state-level forecasting models.  相似文献   

6.
Pecan price forecasting is important to growers attempting to reduce income variability. Random coefficient regression (RCR) and OLS approaches were applied to annual price forecasts. Variance analysis was conducted to forecast pecan price during harvest. Price variation was postulated to be caused by two sets of variables: structural economic variables and unknown factors. RCR results consistently outperformed OLS results in annual price forecasting. The variation of harvest prices was found to be generated by a different process each year, making accurate predictions difficult. Annual price forecasts, however, can provide additional information to pecan growers and shellers for marketing decision-making.  相似文献   

7.
In a data-rich environment, forecasting economic variables amounts to extracting and organizing useful information from a large number of predictors. So far, the dynamic factor model and its variants have been the most successful models for such exercises. In this paper, we investigate a category of LASSO-based approaches and evaluate their predictive abilities for forecasting twenty important macroeconomic variables. These alternative models can handle hundreds of data series simultaneously, and extract useful information for forecasting. We also show, both analytically and empirically, that combing forecasts from LASSO-based models with those from dynamic factor models can reduce the mean square forecast error (MSFE) further. Our three main findings can be summarized as follows. First, for most of the variables under investigation, all of the LASSO-based models outperform dynamic factor models in the out-of-sample forecast evaluations. Second, by extracting information and formulating predictors at economically meaningful block levels, the new methods greatly enhance the interpretability of the models. Third, once forecasts from a LASSO-based approach are combined with those from a dynamic factor model by forecast combination techniques, the combined forecasts are significantly better than either dynamic factor model forecasts or the naïve random walk benchmark.  相似文献   

8.
This paper reviews a spreadsheet-based forecasting approach which a process industry manufacturer developed and implemented to link annual corporate forecasts with its manufacturing/distribution operations. First, we consider how this forecasting system supports overall production planning and why it must be compatible with corporate forecasts. We then review the results of substantial testing of variations on the Winters three-parameter exponential smoothing model on 28 actual product family time series. In particular, we evaluate whether the use of damping parameters improves forecast accuracy. The paper concludes that a Winters four-parameter model (i.e. the standard Winters three-parameter model augmented by a fourth parameter to damp the trend) provides the most accurate forecasts of the models evaluated. Our application confirms the fact that there are situations where the use of damped trend parameters in short-run exponential smoothing based forecasting models is beneficial.  相似文献   

9.
Abstract

In this paper, we make multi-step forecasts of the annual growth rates of the real GDP for each of the 16 German Länder simultaneously. We apply dynamic panel models accounting for spatial dependence between regional GDP. We find that both pooling and accounting for spatial effects help to improve the forecast performance substantially. We demonstrate that the effect of accounting for spatial dependence is more pronounced for longer forecasting horizons (the forecast accuracy gain is about 9% for a 1-year horizon and exceeds 40% for a 5-year horizon). We recommend incorporating a spatial dependence structure into regional forecasting models, especially when long-term forecasts are made.  相似文献   

10.
Many businesses and industries require accurate forecasts for weekly time series nowadays. However, the forecasting literature does not currently provide easy-to-use, automatic, reproducible and accurate approaches dedicated to this task. We propose a forecasting method in this domain to fill this gap, leveraging state-of-the-art forecasting techniques, such as forecast combination, meta-learning, and global modelling. We consider different meta-learning architectures, algorithms, and base model pools. Based on all considered model variants, we propose to use a stacking approach with lasso regression which optimally combines the forecasts of four base models: a global Recurrent Neural Network (RNN) model, Theta, Trigonometric Box–Cox ARMA Trend Seasonal (TBATS), and Dynamic Harmonic Regression ARIMA (DHR-ARIMA), as it shows the overall best performance across seven experimental weekly datasets on four evaluation metrics. Our proposed method also consistently outperforms a set of benchmarks and state-of-the-art weekly forecasting models by a considerable margin with statistical significance. Our method can produce the most accurate forecasts, in terms of mean sMAPE, for the M4 weekly dataset among all benchmarks and all original competition participants.  相似文献   

11.
In this paper, we examine the forecast accuracy of linear autoregressive, smooth transition autoregressive (STAR), and neural network (NN) time series models for 47 monthly macroeconomic variables of the G7 economies. Unlike previous studies that typically consider multiple but fixed model specifications, we use a single but dynamic specification for each model class. The point forecast results indicate that the STAR model generally outperforms linear autoregressive models. It also improves upon several fixed STAR models, demonstrating that careful specification of nonlinear time series models is of crucial importance. The results for neural network models are mixed in the sense that at long forecast horizons, an NN model obtained using Bayesian regularization produces more accurate forecasts than a corresponding model specified using the specific-to-general approach. Reasons for this outcome are discussed.  相似文献   

12.
This paper evaluates the performances of prediction intervals generated from alternative time series models, in the context of tourism forecasting. The forecasting methods considered include the autoregressive (AR) model, the AR model using the bias-corrected bootstrap, seasonal ARIMA models, innovations state space models for exponential smoothing, and Harvey’s structural time series models. We use thirteen monthly time series for the number of tourist arrivals to Hong Kong and Australia. The mean coverage rates and widths of the alternative prediction intervals are evaluated in an empirical setting. It is found that all models produce satisfactory prediction intervals, except for the autoregressive model. In particular, those based on the bias-corrected bootstrap perform best in general, providing tight intervals with accurate coverage rates, especially when the forecast horizon is long.  相似文献   

13.
This paper investigates factors influencing fixed bias in forecasting state sales taxes revenues. By extending an existing model used to explain forecast accuracy to include a series of complex interactions related to the potential political and policy use of revenue forecasts, the paper extends our understanding of the forecasting process in government. Exploratory empirical analysis based on survey data is used to provide evidence that bias in forecasting results, at least in part, from political and policy manipulation. There is also evidence that institutional reforms associated with ‘good management’ practices affect forecast bias, but in complex ways depending upon the extent to which political competition exists within the state.  相似文献   

14.
The M4 competition is the continuation of three previous competitions started more than 45 years ago whose purpose was to learn how to improve forecasting accuracy, and how such learning can be applied to advance the theory and practice of forecasting. The purpose of M4 was to replicate the results of the previous ones and extend them into three directions: First significantly increase the number of series, second include Machine Learning (ML) forecasting methods, and third evaluate both point forecasts and prediction intervals. The five major findings of the M4 Competitions are: 1. Out Of the 17 most accurate methods, 12 were “combinations” of mostly statistical approaches. 2. The biggest surprise was a “hybrid” approach that utilized both statistical and ML features. This method’s average sMAPE was close to 10% more accurate than the combination benchmark used to compare the submitted methods. 3. The second most accurate method was a combination of seven statistical methods and one ML one, with the weights for the averaging being calculated by a ML algorithm that was trained to minimize the forecasting. 4. The two most accurate methods also achieved an amazing success in specifying the 95% prediction intervals correctly. 5. The six pure ML methods performed poorly, with none of them being more accurate than the combination benchmark and only one being more accurate than Naïve2. This paper presents some initial results of M4, its major findings and a logical conclusion. Finally, it outlines what the authors consider to be the way forward for the field of forecasting.  相似文献   

15.
This paper studies performance of factor-based forecasts using differenced and nondifferenced data. Approximate variances of forecasting errors from the two forecasts are derived and compared. It is reported that the forecast using nondifferenced data tends to be more accurate than that using differenced data. This paper conducts simulations to compare root mean squared forecasting errors of the two competing forecasts. Simulation results indicate that forecasting using nondifferenced data performs better. The advantage of using nondifferenced data is more pronounced when a forecasting horizon is long and the number of factors is large. This paper applies the two competing forecasting methods to 68 I(1) monthly US macroeconomic variables across a range of forecasting horizons and sampling periods. We also provide detailed forecasting analysis on US inflation and industrial production. We find that forecasts using nondifferenced data tend to outperform those using differenced data.  相似文献   

16.
This paper introduces a novel meta-learning algorithm for time series forecast model performance prediction. We model the forecast error as a function of time series features calculated from historical time series with an efficient Bayesian multivariate surface regression approach. The minimum predicted forecast error is then used to identify an individual model or a combination of models to produce the final forecasts. It is well known that the performance of most meta-learning models depends on the representativeness of the reference dataset used for training. In such circumstances, we augment the reference dataset with a feature-based time series simulation approach, namely GRATIS, to generate a rich and representative time series collection. The proposed framework is tested using the M4 competition data and is compared against commonly used forecasting approaches. Our approach provides comparable performance to other model selection and combination approaches but at a lower computational cost and a higher degree of interpretability, which is important for supporting decisions. We also provide useful insights regarding which forecasting models are expected to work better for particular types of time series, the intrinsic mechanisms of the meta-learners, and how the forecasting performance is affected by various factors.  相似文献   

17.
Local and state governments depend on small area population forecasts to make important decisions concerning the development of local infrastructure and services. Despite their importance, current methods often produce highly inaccurate forecasts. Recent years have witnessed promising developments in time series forecasting using Machine Learning across a wide range of social and economic variables. However, limited work has been undertaken to investigate the potential application of Machine Learning methods in demography, particularly for small area population forecasting. In this paper we describe the development of two Long-Short Term Memory network architectures for small area populations. We employ the Keras Tuner to select layer unit numbers, vary the window width of input data, and apply a double training and validation regime which supports work with short time series and prioritises later sequence values for forecasts. These methods are transferable and can be applied to other data sets. Retrospective small area population forecasts for Australia were created for the periods 2006–16 and 2011–16. Model performance was evaluated against actual data and two benchmark methods (LIN/EXP and CSP-VSG). We also evaluated the impact of constraining small area population forecasts to an independent national forecast. Forecast accuracy was influenced by jump-off year, constraining, area size, and remoteness. The LIN/EXP model was the best performing method for the 2011-based forecasts whilst deep learning methods performed best for the 2006-based forecasts, including significant improvements in the accuracy of 10 year forecasts. However, benchmark methods were consistently more accurate for more remote areas and for those with populations <5000.  相似文献   

18.
In this work, we propose a novel framework for density forecast combination by constructing time-varying weights based on time-varying features. Our framework estimates weights in the forecast combination via Bayesian log predictive scores, in which the optimal forecast combination is determined by time series features from historical information. In particular, we use an automatic Bayesian variable selection method to identify the importance of different features. To this end, our approach has better interpretability compared to other black-box forecasting combination schemes. We apply our framework to stock market data and M3 competition data. Based on our structure, a simple maximum-a-posteriori scheme outperforms benchmark methods, and Bayesian variable selection can further enhance the accuracy for both point forecasts and density forecasts.  相似文献   

19.
Accurate solar forecasts are necessary to improve the integration of solar renewables into the energy grid. In recent years, numerous methods have been developed for predicting the solar irradiance or the output of solar renewables. By definition, a forecast is uncertain. Thus, the models developed predict the mean and the associated uncertainty. Comparisons are therefore necessary and useful for assessing the skill and accuracy of these new methods in the field of solar energy.The aim of this paper is to present a comparison of various models that provide probabilistic forecasts of the solar irradiance within a very strict framework. Indeed, we consider focusing on intraday forecasts, with lead times ranging from 1 to 6 h. The models selected use only endogenous inputs for generating the forecasts. In other words, the only inputs of the models are the past solar irradiance data. In this context, the most common way of generating the forecasts is to combine point forecasting methods with probabilistic approaches in order to provide prediction intervals for the solar irradiance forecasts. For this task, we selected from the literature three point forecasting models (recursive autoregressive and moving average (ARMA), coupled autoregressive and dynamical system (CARDS), and neural network (NN)), and seven methods for assessing the distribution of their error (linear model in quantile regression (LMQR), weighted quantile regression (WQR), quantile regression neural network (QRNN), recursive generalized autoregressive conditional heteroskedasticity (GARCHrls), sieve bootstrap (SB), quantile regression forest (QRF), and gradient boosting decision trees (GBDT)), leading to a comparison of 20 combinations of models.None of the model combinations clearly outperform the others; nevertheless, some trends emerge from the comparison. First, the use of the clear sky index ensures the accuracy of the forecasts. This derived parameter permits time series to be deseasonalized with missing data, and is also a good explanatory variable of the distribution of the forecasting errors. Second, regardless of the point forecasting method used, linear models in quantile regression, weighted quantile regression and gradient boosting decision trees are able to forecast the prediction intervals accurately.  相似文献   

20.
We analyze whether it is better to forecast air travel demand using aggregate data at (say) a national level, or to aggregate the forecasts derived for individual airports using airport-specific data. We compare the US Federal Aviation Administration’s (FAA) practice of predicting the total number of passengers using macroeconomic variables with an equivalently specified AIM (aggregating individual markets) approach. The AIM approach outperforms the aggregate forecasting approach in terms of its out-of-sample air travel demand predictions for different forecast horizons. Variants of AIM, where we restrict the coefficient estimates of some explanatory variables to be the same across individual airports, generally dominate both the aggregate and AIM approaches. The superior out-of-sample performances of these so-called quasi-AIM approaches depend on the trade-off between heterogeneity and estimation uncertainty. We argue that the quasi-AIM approaches exploit the heterogeneity across individual airports efficiently, without suffering from as much estimation uncertainty as the AIM approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号