首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Ritchken and Trevor (1999) proposed a lattice approach for pricing American options under discrete time-varying volatility GARCH frameworks. Even though the lattice approach worked well for the pricing of the GARCH options, it was inappropriate when the option price was computed on the lattice using standard backward recursive procedures, even if the concepts of Cakici and Topyan (2000) were incorporated. This paper shows how to correct the deficiency and that with our adjustment, the lattice method performs properly for option pricing under the GARCH process. JEL Classification: C10, C32, C51, F37, G12  相似文献   

2.
This study extends the GARCH pricing tree in Ritchken and Trevor (J Financ 54:366–402, 1999) by incorporating an additional jump process to develop a lattice model to value options. The GARCH-jump model can capture the behavior of asset prices more appropriately given its consistency with abundant empirical findings that discontinuities in the sample path of financial asset prices still being found even allowing for autoregressive conditional heteroskedasticity. With our lattice model, it shows that both the GARCH and jump effects in the GARCH-jump model are negative for near-the-money options, while positive for in-the-money and out-of-the-money options. In addition, even when the GARCH model is considered, the jump process impedes the early exercise and thus reduces the percentage of the early exercise premium of American options, particularly for shorter-term horizons. Moreover, the interaction between the GARCH and jump processes can raise the percentage proportions of the early exercise premiums for shorter-term horizons, whereas this effect weakens when the time to maturity increases.  相似文献   

3.
The exploration of the mean-reversion of commodity prices is important for inventory management, inflation forecasting and contingent claim pricing. Bessembinder et al. [J. Finance, 1995, 50, 361–375] document the mean-reversion of commodity spot prices using futures term structure data; however, mean-reversion to a constant level is rejected in nearly all studies using historical spot price time series. This indicates that the spot prices revert to a stochastic long-run mean. Recognizing this, I propose a reduced-form model with the stochastic long-run mean as a separate factor. This model fits the futures dynamics better than do classical models such as the Gibson–Schwartz [J. Finance, 1990, 45, 959–976] model and the Casassus–Collin-Dufresne [J. Finance, 2005, 60, 2283–2331] model with a constant interest rate. An application for option pricing is also presented in this paper.  相似文献   

4.
We suggest an improved FFT pricing algorithm for discretely sampled Asian options with general independently distributed returns in the underlying. Our work complements the studies of Carverhill and Clewlow [Risk, 1990, 3(4), 25–29], Benhamou [J. Comput. Finance, 2002, 6(1), 49–68], and Fusai and Meucci [J. Bank. Finance, 2008, 32(10), 2076–2088], and, if we restrict our attention only to log-normally distributed returns, also Ve?e? [Risk, 2002, 15(6), 113–116]. While the existing convolution algorithms compute the density of the underlying state variable by moving forward on a suitably defined state space grid, our new algorithm uses backward price convolution, which resembles classical lattice pricing algorithms. For the first time in the literature we provide an analytical upper bound for the pricing error caused by the truncation of the state space grid and by the curtailment of the integration range. We highlight the benefits of the new scheme and benchmark its performance against existing finite difference, Monte Carlo, and forward density convolution algorithms.  相似文献   

5.
Abstract

We consider the three-factor double mean reverting (DMR) option pricing model of Gatheral [Consistent Modelling of SPX and VIX Options, 2008], a model which can be successfully calibrated to both VIX options and SPX options simultaneously. One drawback of this model is that calibration may be slow because no closed form solution for European options exists. In this paper, we apply modified versions of the second-order Monte Carlo scheme of Ninomiya and Victoir [Appl. Math. Finance, 2008, 15, 107–121], and compare these to the Euler–Maruyama scheme with full truncation of Lord et al. [Quant. Finance, 2010, 10(2), 177–194], demonstrating on the one hand that fast calibration of the DMR model is practical, and on the other that suitably modified Ninomiya–Victoir schemes are applicable to the simulation of much more complicated time-homogeneous models than may have been thought previously.  相似文献   

6.
Model risk causes significant losses in financial derivative pricing and hedging. Investors may undertake relatively risky investments due to insufficient hedging or overpaying implied by flawed models. The GARCH model with normal innovations (GARCH-normal) has been adopted to depict the dynamics of the returns in many applications. The implied GARCH-normal model is the one minimizing the mean square error between the market option values and the GARCH-normal option prices. In this study, we investigate the model risk of the implied GARCH-normal model fitted to conditional leptokurtic returns, an important feature of financial data. The risk-neutral GARCH model with conditional leptokurtic innovations is derived by the extended Girsanov principle. The option prices and hedging positions of the conditional leptokurtic GARCH models are obtained by extending the dynamic semiparametric approach of Huang and Guo [Statist. Sin., 2009, 19, 1037–1054]. In the simulation study we find significant model risk of the implied GARCH-normal model in pricing and hedging barrier and lookback options when the underlying dynamics follow a GARCH-t model.  相似文献   

7.
Recent empirical studies have shown that GARCH models can be successfully used to describe option prices. Pricing such contracts requires knowledge of the risk neutral cumulative return distribution. Since the analytical forms of these distributions are generally unknown, computationally intensive numerical schemes are required for pricing to proceed. Heston and Nandi (2000) consider a particular GARCH structure that permits analytical solutions for pricing European options and they provide empirical support for their model. The analytical tractability comes at a potential cost of realism in the underlying GARCH dynamics. In particular, their model falls in the affine family, whereas most GARCH models that have been examined fall in the non-affine family. This article takes a closer look at this model with the objective of establishing whether there is a cost to restricting focus to models in the affine family. We confirm Heston and Nandi's findings, namely that their model can explain a significant portion of the volatility smile. However, we show that a simple non affine NGARCH option model is superior in removing biases from pricing residuals for all moneyness and maturity categories especially for out-the-money contracts. The implications of this finding are examined. JEL Classification G13  相似文献   

8.
Since there is no analytic solution for arithmetic average options until present, developing an efficient numerical algorithm becomes a promising alternative. One of the most famous numerical algorithms is introduced by Hull and White (J Deriv 1:21–31, 1993). Motivated by the common idea of reducing the nonlinearity error in the adaptive mesh model in Figlewski and Gao (J Financ Econ 53:313–351, 1999) and the adaptive quadrature method, we propose an adaptive placement method to replace the logarithmically equally-spaced placement rule in the Hull and White’s model by placing more representative average prices in the highly nonlinear area of the option value as the function of the arithmetic average stock price. The basic idea of this method is to design a recursive algorithm to limit the error of the linear interpolation between each pair of adjacent representative average prices. Numerical experiments verify the superior performance of this method for reducing the interpolation error and hence improving the convergence rate. To show that the adaptive placement method can improve any numerical algorithm with the techniques of augmented state variables and the piece-wise linear interpolation approximation, we also demonstrate how to integrate the adaptive placement method into the GARCH option pricing algorithm in Ritchken and Trevor (J Finance 54:377–402, 1999). Similarly great improvement of the convergence rate suggests the potential applications of this novel method to a broad class of numerical pricing algorithms for exotic options and complex underlying processes.  相似文献   

9.
《Quantitative Finance》2013,13(2):116-132
Abstract

This paper develops a family of option pricing models when the underlying stock price dynamic is modelled by a regime switching process in which prices remain in one volatility regime for a random amount of time before switching over into a new regime. Our family includes the regime switching models of Hamilton (Hamilton J 1989 Econometrica 57 357–84), in which volatility influences returns. In addition, our models allow for feedback effects from returns to volatilities. Our family also includes GARCH option models as a special limiting case. Our models are more general than GARCH models in that our variance updating schemes do not only depend on levels of volatility and asset innovations, but also allow for a second factor that is orthogonal to asset innovations. The underlying processes in our family capture the asymmetric response of volatility to good and bad news and thus permit negative (or positive) correlation between returns and volatility. We provide the theory for pricing options under such processes, present an analytical solution for the special case where returns provide no feedback to volatility levels, and develop an efficient algorithm for the computation of American option prices for the general case.  相似文献   

10.
This paper investigates the pricing of Nikkei 225 Options using the Markov Switching GARCH (MSGARCH) model, and examines its practical usefulness in option markets. We assume that investors are risk-neutral and then compute option prices by using Monte Carlo simulation. The results reveal that, for call options, the MSGARCH model with Student’s t-distribution gives more accurate pricing results than GARCH models and the Black–Scholes model. However, this model does not have good performance for put options.  相似文献   

11.
Helin Zhu  Fan Ye 《Quantitative Finance》2013,13(11):1885-1900
Fast pricing of American-style options has been a difficult problem since it was first introduced to the financial markets in 1970s, especially when the underlying stocks’ prices follow some jump-diffusion processes. In this paper, we extend the ‘true martingale algorithm’ proposed by Belomestny et al. [Math. Finance, 2009, 19, 53–71] for the pure-diffusion models to the jump-diffusion models, to fast compute true tight upper bounds on the Bermudan option price in a non-nested simulation manner. By exploiting the martingale representation theorem on the optimal dual martingale driven by jump-diffusion processes, we are able to explore the unique structure of the optimal dual martingale and construct an approximation that preserves the martingale property. The resulting upper bound estimator avoids the nested Monte Carlo simulation suffered by the original primal–dual algorithm, therefore significantly improving the computational efficiency. Theoretical analysis is provided to guarantee the quality of the martingale approximation. Numerical experiments are conducted to verify the efficiency of our algorithm.  相似文献   

12.
In this paper, we present a new pricing formula based on a modified Black–Scholes (B-S) model with the standard Brownian motion being replaced by a particular process constructed with a special type of skew Brownian motions. Although Corns and Satchell [2007. “Skew Brownian Motion and Pricing European Options.” The European Journal of Finance 13 (6): 523–544] have worked on this model, the results they obtained are incorrect. In this paper, not only do we identify precisely where the errors in Although Corns and Satchell [2007. “Skew Brownian Motion and Pricing European Options”. The European Journal of Finance 13 (6): 523–544] are, we also present a new closed-form pricing formula based on a newly proposed equivalent martingale measure, called ‘endogenous risk neutral measure’, by which only endogenous risks should and can be fully hedged. The newly derived option pricing formula takes the B-S formula as a special case and it does not induce any significant additional burden in terms of numerically computing option values, compared with the effort involved in computing the B-S formula.  相似文献   

13.
The rough Bergomi model introduced by Bayer et al. [Quant. Finance, 2015, 1–18] has been outperforming conventional Markovian stochastic volatility models by reproducing implied volatility smiles in a very realistic manner, in particular for short maturities. We investigate here the dynamics of the VIX and the forward variance curve generated by this model, and develop efficient pricing algorithms for VIX futures and options. We further analyse the validity of the rough Bergomi model to jointly describe the VIX and the SPX, and present a joint calibration algorithm based on the hybrid scheme by Bennedsen et al. [Finance Stoch., forthcoming].  相似文献   

14.
In this paper, we propose a methodology for pricing basket options in the multivariate Variance Gamma model introduced in Luciano and Schoutens [Quant. Finance 6(5), 385–402]. The stock prices composing the basket are modelled by time-changed geometric Brownian motions with a common Gamma subordinator. Using the additivity property of comonotonic stop-loss premiums together with Gauss-Laguerre polynomials, we express the basket option price as a linear combination of Black & Scholes prices. Furthermore, our new basket option pricing formula enables us to calibrate the multivariate VG model in a fast way. As an illustration, we show that even in the constrained situation where the pairwise correlations between the Brownian motions are assumed to be equal, the multivariate VG model can closely match the observed Dow Jones index options.  相似文献   

15.
This study presents a set of closed-form exact solutions for pricing discretely sampled variance swaps and volatility swaps, based on the Heston stochastic volatility model with regime switching. In comparison with all the previous studies in the literature, this research, which obtains closed-form exact solutions for variance and volatility swaps with discrete sampling times, serves several purposes. (1) It verifies the degree of validity of Elliott et al.'s [Appl. Math. Finance, 2007, 14(1), 41–62] continuous-sampling-time approximation for variance and volatility swaps of relatively short sampling periods. (2) It examines the effect of ignoring regime switching on pricing variance and volatility swaps. (3) It contributes to bridging the gap between Zhu and Lian's [Math. Finance, 2011, 21(2), 233–256] approach and Elliott et al.'s framework. (4) Finally, it presents a semi-Monte-Carlo simulation for the pricing of other important realized variance based derivatives.  相似文献   

16.
The rough Bergomi model, introduced by Bayer et al. [Quant. Finance, 2016, 16(6), 887–904], is one of the recent rough volatility models that are consistent with the stylised fact of implied volatility surfaces being essentially time-invariant, and are able to capture the term structure of skew observed in equity markets. In the absence of analytical European option pricing methods for the model, we focus on reducing the runtime-adjusted variance of Monte Carlo implied volatilities, thereby contributing to the model’s calibration by simulation. We employ a novel composition of variance reduction methods, immediately applicable to any conditionally log-normal stochastic volatility model. Assuming one targets implied volatility estimates with a given degree of confidence, thus calibration RMSE, the results we demonstrate equate to significant runtime reductions—roughly 20 times on average, across different correlation regimes.  相似文献   

17.
Standard delta hedging fails to exactly replicate a European call option in the presence of transaction costs. We study a pricing and hedging model similar to the delta hedging strategy with an endogenous volatility parameter for the calculation of delta over time. The endogenous volatility depends on both the transaction costs and the option strike prices. The optimal hedging volatility is calculated using the criterion of minimizing the weighted upside and downside replication errors. The endogenous volatility model with equal weights on the up and down replication errors yields an option premium close to the Leland [J. Finance, 1985 Leland, HE. 1985. Option pricing and replication with transaction costs. J. Finance, 40: 12831301. [Crossref], [Web of Science ®] [Google Scholar], 40, 1283–1301] heuristic approach. The model with weights being the probabilities of the option's moneyness provides option prices closest to the actual prices. Option prices from the model are identical to the Black–Scholes option prices when transaction costs are zero. Data on S&P 500 index cash options from January to June 2008 illustrate the model.  相似文献   

18.
The rough Bergomi (rBergomi) model, introduced recently in Bayer et al. [Pricing under rough volatility. Quant. Finance, 2016, 16(6), 887–904], is a promising rough volatility model in quantitative finance. It is a parsimonious model depending on only three parameters, and yet remarkably fits empirical implied volatility surfaces. In the absence of analytical European option pricing methods for the model, and due to the non-Markovian nature of the fractional driver, the prevalent option is to use the Monte Carlo (MC) simulation for pricing. Despite recent advances in the MC method in this context, pricing under the rBergomi model is still a time-consuming task. To overcome this issue, we have designed a novel, hierarchical approach, based on: (i) adaptive sparse grids quadrature (ASGQ), and (ii) quasi-Monte Carlo (QMC). Both techniques are coupled with a Brownian bridge construction and a Richardson extrapolation on the weak error. By uncovering the available regularity, our hierarchical methods demonstrate substantial computational gains with respect to the standard MC method. They reach a sufficiently small relative error tolerance in the price estimates across different parameter constellations, even for very small values of the Hurst parameter. Our work opens a new research direction in this field, i.e. to investigate the performance of methods other than Monte Carlo for pricing and calibrating under the rBergomi model.  相似文献   

19.
This paper introduces new variance reduction techniques and computational improvements to Monte Carlo methods for pricing American-style options. For simulation algorithms that compute lower bounds of American option values, we apply martingale control variates and introduce the local policy enhancement, which adopts a local simulation to improve the exercise policy. For duality-based upper bound methods, specifically the primal–dual simulation algorithm, we have developed two improvements. One is sub-optimality checking, which saves unnecessary computation when it is sub-optimal to exercise the option along the sample path; the second is boundary distance grouping, which reduces computational time by skipping computation on selected sample paths based on the distance to the exercise boundary. Numerical results are given for single asset Bermudan options, moving window Asian options and Bermudan max options. In some examples the computational time is reduced by a factor of several hundred, while the confidence interval of the true option value is considerably tighter than before the improvements.  相似文献   

20.
This paper applies an algorithm for the convolution of compactly supported Legendre series (the CONLeg method) (cf. Hale and Townsend, An algorithm for the convolution of Legendre series. SIAM J. Sci. Comput., 2014, 36, A1207–A1220), to pricing European-type, early-exercise and discrete-monitored barrier options under a Lévy process. The paper employs Chebfun (cf. Trefethen et al., Chebfun Guide, 2014 (Pafnuty Publications: Oxford), Available online at: http://www.chebfun.org/) in computational finance and provides a quadrature-free approach by applying the Chebyshev series in financial modelling. A significant advantage of using the CONLeg method is to formulate option pricing and option Greek curves rather than individual prices/values. Moreover, the CONLeg method can yield high accuracy in option pricing when the risk-free smooth probability density function (PDF) is smooth/non-smooth. Finally, we show that our method can accurately price options deep in/out of the money and with very long/short maturities. Compared with existing techniques, the CONLeg method performs either favourably or comparably in numerical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号