首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Technology is one of eight learning areas of the New Zealand national curriculum. It aims to develop a broad technological literacy through students participating in programmes in which the practice of technological development is experienced, as is knowledge informing practice, and students gain an understanding of technology as a domain in its own right. In New Zealand children begin school at 5 years of age and this paper describes a classroom research project during which these students design and then construct a photo frame. The inducement for this development arose from students needing to safely transport home and then display a class photograph. This provided the opportunity for developing technological knowledge and skills within a real and relevant context—two key drivers when working with young students (Ministry of Education 2007) [MoE]. The results of this project suggest that teaching technology to five-year-old students is achievable and a valuable addition to other learning opportunities provided in the new entrant classroom. Strategies are suggested that will enable students to successfully achieve their goals whilst gaining a simple understanding of the technological process. By making good use of these it is possible to create a worthwhile and imaginatively challenging activity that reflects the essence of the technology education curriculum.  相似文献   

2.
The stated aim of technology education in New Zealand is to develop students' level of technological literacy. This paper introduces the Technology Assessment Framework (TAF) as an organisational tool for the development and delivery of technology programmes that focus on increasing students' technological literacy through the enhancement of their technological practice across technological areas and contexts. The TAF was developed and refined in 1999 and 2000 as part of a two year New Zealand Ministry of Education funded research project, and integrated within a national professional development programme in 2000 designed for preservice and inservice teacher educators in New Zealand.This paper backgrounds the sociocultural theoretical position of the TAF and explains how it reflects and furthers the aim of technology education in New Zealand. The TAF is then presented and explained with the aid of illustrative examples from classroom practice.  相似文献   

3.
In 1999 Technology in the New Zealand Curriculum became mandatory. It was developed over a period of approximately four years from conception to publication, with wide consultation. It was first published in October 1995. During the three years between publication and gazetting many teachers were involved in professional development. During this time it became obvious that there was confusion amongst teachers about the meaning of `authenticity' in relation to technology programmes. Do technological problems need to be authentic to the students themselves or to the nature of technological practice? Many learning theories have informed the development of this document. Those selected here indicate quite clearly the meaning and context of authenticity with regard to technology education. By involving our students in activity that is authentic to technological practice or real world technology, teachers are able to provide stimulating and relevant learning for students. This was also the indication in recent communication from the Ministry of Education in New Zealand during the 1999 Technology Education New Zealand (TENZ) conference. By giving academic value to technology and developing our teachers in the fields of technological practice we hope our students will influence the economic status of our country in the future.  相似文献   

4.
Understanding and undertaking technological practice is fundamental to student learning in technology education in New Zealand, and the enhancement of student technological literacy. The implementation of technology into New Zealand’s core curriculum has reached the stage where it has become critical that learning programmes are based on student progression to allow for a seamless education in technology from early primary to senior secondary. For this to occur, teachers and students need to focus learning on key features of technology education. This paper is based on research initiated in 2001 which explored the nature of progression of student learning in technology. It draws on findings from research undertaken in New Zealand classrooms in 1999–2000 that resulted in the development of the technology assessment framework (TAF), (as reported in detail Compton & Harwood 2003). The 1999–2001 research was funded by the New Zealand Ministry of Education. Findings from the 2001 research allowed for the identification of key features of technology education that are relevant across all age groups, contexts and technological areas. These key features were collectively termed components of practice. The three components of practice established to date are brief development, planning for practice, and outcome development and evaluation. This paper discusses the development of progression matrices for each of these and provides illustrative examples of student work levelled against the matrix indicators of progression for brief development.  相似文献   

5.
Technology education in the New Zealand context has seen significant change since it’s inception as a technical subject. The changing nature of the subject in New Zealand secondary schools is influenced by some teachers’ preoccupation with the making of quality product outcomes, rather than their enactment of the curriculum, which conceptualises a wider remit. Research into the perceptions of technology teachers’ interpretation and enactment of the curriculum suggests that to enable change, teachers need to adopt a form of “technological thinking”, in support of their “technical thinking”. Technological thinking is a notion presented to support teachers to explore a range of differing pedagogical approaches and learning outcomes, reflective of the intent of the New Zealand curriculum, which aims to foster learning environments that are innovative and responsive to students’ social and academic needs.  相似文献   

6.
This paper reflects on the outcomes of teacher professional development programmes in technology education. These programmes were based on a model which emphasised the importance of teachers developing an understanding of both technological practice and technology education. Two different programmes have been developed and trialed in the New Zealand context. They are the Facilitator Training programme, and the Technology Teacher Development Resource Package programme. This paper will focus on the outcomes of these programmes. The Facilitator Training programme was a year long programme, and ran in 1995 and 1996. It involved training a total of 30 educators – 15 each year, from all over New Zealand. The Resource Package was trialed in 14 schools over a 3–6 month period in 1996. The evaluations indicate the successful nature of these programmes and the usefulness of the model as a basis for the development of teacher professional development in technology education. The programmes reported on in this paper were developed and evaluated as part of two New Zealand Ministry of Education contracts held by the Centre for Science, Mathematics and Technology Education Research. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
The Pre-service Technology Teacher Education Resource (PTTER) was developed as a cross-institutional resource to support the development of initial technology teacher education programmes in New Zealand. The PTTER was developed through collaboration involving representatives from each of the six New Zealand university teacher education providers, Massey University, University of Auckland, University of Canterbury, University of Otago, Victoria University and University of Waikato, working with the National Technology Professional Development Manager. The framework for PTTER is built on four key elements considered to be essential to the education of technology teachers. The four elements are: philosophy of technology, rationale for technology education, technology in the New Zealand curriculum, and teaching technology. The PTTER is a web-based resource aimed at assisting technology teacher educators in the development of their teacher education programmes. The framework is a statement of shared philosophy, purpose and intent and is located on the Techlink website (www.techlink.org.nz). PTTER contains a range of teaching resources and strategies located within an overall framework for initial technology teacher education programmes. This paper describes the rationale for the PTTER framework, the process through which it was developed, explanation of each of the framework’s elements, and concludes with discussion of the framework’s implementation and future development.  相似文献   

8.
This article reports on the up-date and development of an on-line resource to support of teachers’ conceptual understandings and pedagogical practice in New Zealand. Techlink is a website dedicated to supporting technology teachers, students and those with an interest in technology education. This research documents part of a Ministry of Education initiative to develop materials to support teaching and learning in technology education. The research was conducted by educational researchers contracted through Technology Education New Zealand the professional subject association. This research was a component of a larger contract with an overall aim of improving student achievement particularly at Years 12 and 13, the final 2 years of schooling in New Zealand. The aims of the initiative reported in this article were to provide ongoing evaluation of the effectiveness of the materials developed by the writing team, to support teacher shifts in understanding and pedagogical practice. This article gives an overview of the 3 year research study, focussing on teachers and teacher educators perceptions of Techlink as a professional development resource. An iterative process was used to critique and give feedback on existing and developed materials. The article also discusses enhancements made to ensure that the resource reflected the needs of technology teachers and The New Zealand Curriculum (Ministry of Education 2007).  相似文献   

9.
The recently revised New Zealand Curriculum in technology education [Ministry of Education (MoE) Digital technologies: Hangarau Matihiki, Wellington, 2017. https://education.govt.nz/assets/Documents/Ministry/consultations/DT-consultation/DTCP1701-Digital-Technologies-Hangarau-Matihiko-ENG.pdf] presents opportunities for teachers to provide a future-focused approach to learning. Teacher perceptions about the nature of their subject and the discourse within their school however, influence how the curriculum is interpreted, for enactment. This article reports findings from Ph.D. research that explored the disparity between the intent of the technology curriculum and the practice of five technology teachers, in two secondary school settings. There is a focus on the ways that teachers might be supported to navigate challenges and enable change in their practice, if they are motivated to enact technology education in a future-focused way. Teachers’ interpretation and enactment of the New Zealand curriculum are heavily influenced by others’ understanding of their subject, and the organisational structures in their school. A threshold concept is presented as a strategy to transform teachers’ thinking, when making meaning of the curriculum, and to develop their knowledge for practice. Recommendations are made regarding the necessary changes in thinking and practice in technology education in New Zealand, to address a further disparity between what school-based practitioners believe students need and what academic researchers assert is important in contemporary education. Initial Teacher Education Programmes are briefly discussed as a means of addressing this issue from another perspective, to ensure that student teachers are exposed to future-focused conceptions of the curriculum at University, to compensate when such practice is not observed during their school placements.  相似文献   

10.
This paper presents the findings of a longitudinal study on the effectiveness of an innovative one-year pre-service Graduate Diploma of Teaching (secondary) for teachers of Technology. The timing of this study is significant. Over a decade of review and adjustment to the Technology curriculum, leading to the new learning area of Technology in the New Zealand curriculum, Ministry of Education (2007), has caused many teachers in New Zealand schools to retrench to an earlier approach or make their own interpretation of curricular requirements. This situation in schools created the need for those involved with pre-service teacher education to prepare programmes that signpost pitfalls while building on students’ own strengths and those of the curriculum to cope with the wide variety of interpretation and pedagogical approach of school communities. This paper suggests a way forward.  相似文献   

11.
This paper reports on a series of interventions in New Zealand schools in order to enhance the teaching of, and learning in, technology as a new learning area. It details the way in which researchers worked with teachers to introduce technological activities into the classroom, the teachers' reflections on this process and the subsequent development of activities. These activities were undertaken in 14 classrooms (8 primary and 6 secondary).The research took into account past experiences of school-based teacher development and recommendations related to teacher change. Extensive use was made of case-studies from earlier phases of the research, and of the draft technology curriculum, in order to develop teachers' concepts of technology and technology education. Teachers then worked from these concepts to develop technological activities and classroom strategies. The paper also introduces a model that outlines factors contributing to school technological literacy, and suggests that teacher development models will need to allow teachers to develop technological knowledge and an understanding of technological practice, as well as concepts of technology and technology education, if they are to become effective in the teaching of technology.  相似文献   

12.

Using visualized bibliographic data and a range of quantitative research methods, the analysis of the International Journal of Technology and Design Education (IJTDE), which is included in the core collection of Social Science Citation Index, reached a number of conclusions. Firstly, IJTDE is an important platform for the exchange of research results in the field of technology education, and has a significant influence. Secondly, De Vries, Williams, Ankiewicz and a number of others are influential and prolific authors in the IJTDE. Authors from the USA, England, New Zealand, Taiwan and Australia make most contributions to the IJTDE, Delft University of Technology, University of Auckland and the University of Waikato are the more prolific institutions in the IJTDE. Thirdly, technology education, education, design, science, creativity, technology, design education, knowledge, student, technological literacy and problem solving are the most frequency keywords in the IJTDE. Creativity, design education, problem solving, curriculum development, design and critical thinking, practice, engineering education, and STEM education are research trends in the IJTDE between 2000 and 2018. Fourthly, the discipline knowledge base mainly focuses on teaching and design methods in the technological environment, and the definitions of technology-related concepts. The results enable a deeper understanding and consideration of the content and influence of IJTDE, and the research hotspots in the field of technology education.

  相似文献   

13.
This paper reports on detailed case studies into emerging assessment practices in technology in two New Zealand primary schools (Years 1–6) with nine teachers. This research is part of the two year Research in Assessment of Primary Technology (RAPT) project and formed the basis for the one year New Zealand Ministry of Education funded Learning in Technology Education (Assessment) project.Emerging classroom assessment practices in technology, a new subject area in the national curriculum, are discussed. It was found that the existing subcultures in schools, teachers' subject expertise and the school wide policies impacted on the teachers' assessment practices. Assessment was often seen in terms of social and managerial aspects such as team work, turn taking and information skills, rather than procedural and conceptual aspects. Therefore teachers' formative interactions with students distorted the learning away from procedural and conceptual aspects of the subject, and the learning and the formative assessment interactions focused on generic skills rather than student technological understanding.The importance of developing teacher expertise in three dimensions of knowledge about the subject, knowledge in the subject and general pedagogical knowledge is highlighted. Thus the findings from this research have implications for thinking about teaching, learning and assessment in technology.  相似文献   

14.
The purpose of this study was to investigate areas of significance which were related to the understanding of technology and technology education, identified by teachers introducing the key learning area, technology, into their primary school classrooms for the first time. Working from Australia's national document on technology education, A Statement on Technology for Australian Schools (Curriculum Corporation, 1994), two teachers wrestled with how to fit this new curriculum area into their current classroom programs, their understandings of technology as a phenomenon and with their beliefs about teaching and learning in general. The study showed that the teachers made sense of technology education as it related to, from their perspectives, ideas about and aspects of primary school classrooms with which they felt comfortable. Implications for professional development include the need to acknowledge and value the prior experiences and understandings of primary teachers. The challenge for teachers in implementing technology education is gaining a conceptualisation of the learning area, which in some respects, is very like other more familiar learning areas in the primary curriculum, but in many other respects, unique.  相似文献   

15.
This paper examines recent research in student learning of technological concepts and processes. To explore this area three inter-related aspects are considered; existing concepts of technology, technological knowledge and processes. Different views of technology and technology education are reflected in both research outcomes and curriculum documents. Teacher and student perceptions of technology impact on the way in which technology is undertaken in the classroom. Teacher's perceptions of technology influence what they perceive as being important in learning of technology. student's perceptions of technology and technology education influence what knowledge and skills they operationalise in a technological task and hence affect student technological capability. Technological concepts and processes are often defined in different ways by particular groups. Subject subcultures are strongly held by both teachers and students. The influence of subject subcultures and communities of practice will be discussed in terms of defining and operationalising technological concepts and processes. Technological concepts are not consistently defined in the literature. For students to undertake technological activities, knowledge and processes cannot be divorced. Recent research highlights the problems when processes are emphasised over knowledge. This paper will examine different technological concepts in an attempt to create a critical balance between knowledge and process. Much of the literature in technology education has rightly emphasised definitions, curriculum issues, implementation and teacher training. This paper argues that it is now time to place a great emphasis on in-depth research on student understanding of technological concepts and processes and ways in which these can be enhanced.  相似文献   

16.
The purpose of this study was to investigate areas of significance which were related to the understanding of technology and technology education, identified by teachers introducing the key learning area, technology, into their primary school classrooms for the first time. Working from Australia's national document on technology education, A Statement on Technology for Australian Schools (Curriculum Corporation, 1994), two teachers wrestled with how to fit this new curriculum area into their current classroom programs, their understandings of technology as a phenomenon and with their beliefs about teaching and learning in general. The study showed that the teachers made sense of technology education as it related to, from their perspectives, ideas about and aspects of primary school classrooms with which they felt comfortable. Implications for professional development include the need to acknowledge and value the prior experiences and understandings of primary teachers. The challenge for teachers in implementing technology education is gaining a conceptualisation of the learning area, which in some respects, is very like other more familiar learning areas in the primary curriculum, but in many other respects, unique. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Technology-mediated teaching and learning enables access to educational opportunities, irrespective of locality, ruruality or remoteness. The design, development and delivery of technology enhanced learning in pre-service teacher education programs is therefore gaining momentum, both in Australia and internationally. Much research regarding online, or blended learning, has focussed on theoretically-founded learning areas, with less attention directed toward fundamentally practical learning areas, such as Design and Technology Education. Situated within the Bachelor of Education (Early Childhood Education, Primary, and Primary/Middle) degrees at the University of South Australia, Australia, this study captures the design, development and delivery of a blended Design and Technology course with first and third year pre-service teachers. Drawing on course learning analytics, pre-service teacher responses, and the reflective practice of teaching academics, this paper highlights the facilitators and challenges in transitioning to a blended model of curriculum delivery that addresses the contexts of the Australian Curriculum: Technologies.  相似文献   

18.
Rapid social change creates a powerful challenge to individuals and educational institutions. Technology education is not an exception. To be a useful and authentic learning area, technology education should constantly re-examine its rationale in order to formulate responses to changing contexts to improve the quality of learning for students. The more perspectives used for this process, the better the results should be. This article explores several facets of social change that can influence an understanding of the aims and nature of technology education and that might contribute to its development. Social change is a very complex and dynamic phenomenon that can be considered from a variety of perspectives and is reflected in a number of processes. These processes are different in different types of societies. In relation to the topic, the following processes that are relevant to Western societies (it is acknowledged that for different type of societies, e.g. Islamic, Chinese, social context will be different) will be analyzed: (1) The shift of emphasis from engaging society members primarily as producers to engaging society members primarily as consumers; (2) The colonisation of the cognitive and moral spheres of human life by the aesthetic sphere; (3) The integration of people into the technological world and (4) The shift from the Welfare state to the Competition state. These processes have been identified on the basis of their potential influences on the development of technology education and, as a consequence, the students who study it. These processes are in tension which creates even greater challenges to technology education. Several implications of the above analysis in terms of conceptualizing technology education are discussed. It is suggested that social change can be addressed through technology education if the educational goals of it are ‘to broaden minds and develop all pupils in the creation of a better society’. For technology education classrooms, these specifically mean the involvement of students in democratic debates on the future outlines of technological development; development of their social and ecological sensitivities; avoiding orienting their solutions exclusively to the standard of business efficiency and profitability criteria; helping them to distinguish real needs from desires; discussing the role of designed objects in the life of contemporary society; putting more emphasis on other than the aesthetic aspects of life that can provide existential meaning for people; challenging the way people are manipulated through advertising and cultivation of their desires; developing an active/creative attitude towards problems (not re-active); teaching students to formulate problems (not only being involved in problem solving); challenging consumer-oriented design; looking at design as one source of inspiration, not as a source of economic utility; and developing social responsibility  相似文献   

19.
This paper, based in Northern Ireland, is a case study of an innovative programme which places year 3 B.Ed. post-primary student teachers of Technology and Design into industry for a five-day period. The industrial placement programme is set in an international context of evolving pre-service field placements and in a local context defined by the Northern Ireland Curriculum (CCEA 2007); a rationale for the inclusion of Technology and Design within that curriculum; and the promotion of a STEM (Science, Technology, Engineering and Mathematics) agenda. Undertaken in collaboration with a range of industrial partners, the placements aim to give the student teachers an opportunity to spend time in industry. All the students concerned started their teacher education degree straight from school and therefore are without industrial experience. As a result of the placements the students gained valuable industrial experience and thereby further enhanced their working knowledge and understanding in their main subject area of Technology and Design, in particular, and other curricular areas, in general. The students report many benefits, both personally and professionally, to be gained from the placements typically the opportunity to see a range of industrial processes, many of which they are required to teach, and to gain a better understanding of the link between content of Technology and Design education and the activities of industry. This case study is based on feedback from the 2010 to 2011 cohort of students whose comments confirm the inherent value of exposing student teachers to industrial environments.  相似文献   

20.
This paper reports on findings related to the Nature of Technology from Stage Two of the Technological Knowledge and Nature of Technology: Implications for teaching and learning (TKNoT: Imps) research project undertaken in 2009. A key focus in Stage Two was the trialing of different teaching strategies to determine how learning related to the components Characteristics of Technology (CoT) and Characteristics of Technological Outcomes (COTO) could be supported. These components fall within the Nature of Technology (NoT) strand of technology in the New Zealand Curriculum (NZC) (Ministry of Education, 2007) and as such, reflect a philosophical understanding of technology as a discipline. During this stage of the research further exploration was undertaken to determine how student understanding of these two components of technology education progressed from level 1 to level 8 of the NZC (Ministry of Education, 2007). Common misconceptions and partial understandings related to these components are identified and explained and four case studies are presented to illustrate strategies employed by teachers and their impact on student learning related to these two components. The Stage Two outcomes resulted in the revision of the Indicators of Progression for CoT and CoTO in order to clarify the progression expected of students in each component and provide increased teacher guidance to support such progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号