首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ubiquitous and often pervasive expansion of the science, technology, engineering and mathematics (STEM) agenda across global education systems has largely gone uncontested. Strategic efforts to build on perceived natural subject synergies across the separate STEM disciplines are promoted as central to supporting the growth of economies through the development of human capital and by ensuring the supply of suitably trained individuals for vocational roles in these areas. However, these efforts are predicated on the assumption that such perceived natural subject synergies can easily support pedagogical complimentary and in so doing, often fail to acknowledge the social histories of the subjects involved. In this paper the authors examine the divergence in treatment of STEM subjects within the Irish second-level context through the lenses of subject hierarchies and social class. The cultural capital associated with studying each of the respective STEM subjects in school is considered and the objectives of the STEM agenda are problematised.  相似文献   

2.
The growth of STEM career occupations is outpacing the college enrollment of STEM students in the United States. There have been many research projects investigating this issue. There has not however been a study which investigated the impact non-fiction literature has on student interest in studying STEM (specifically engineering) content. The purpose of this study was to investigate the change of student attitudes toward engineering after reading literature involving non-fiction engineering centric narratives. The study used a modified version of the PATT (Pupils Attitudes Towards Technology) called the TEAS (Technology and Engineering Attitudes Scale) to measure student attitude change. The students were high-school aged students in the United States (ages: 15–17) who were enrolled in an English Literature course. The students completed the TEAS before and after reading and studying two engineering and technology centric non-fiction books (The Boy Who Harnessed The Wind and October Sky). The data revealed that student attitude after reading and studying the two books did not statistically change.  相似文献   

3.
Recent publications have elevated the priority of increasing the integration of Science, Technology, Engineering, and Mathematics (STEM) content for K-12 education. The STEM education community must invest in the development of valid and reliable to scales to measure STEM content, knowledge fusion, and perceptions of the nature of STEM. This brief report discusses the development of an instrument to measure student perceptions of the interdependent nature of STEM content knowledge in the context of a complex classroom intervention implemented in five Colorado high schools (N = 275). Specifically, cross-functional science, technology, engineering, and mathematics teams of high school students were formed to complete engineering design problems. Exploratory (pretest) and confirmatory (posttest) factor analyses indicated that a newly adapted scale to measure student perceptions of the interdependent nature of STEM content knowledge had possessed adequate model fit. Furthermore, analysis revealed a novel pattern of results for the intervention. Specifically, students with initially high perceptions of the interdependent nature of STEM sustained their high perceptions at posttest; however, students with initially low perceptions exhibited statistically significantly positive gains from pretest to posttest. Therefore, this intervention may work best with students who are at risk of losing interest in STEM disciplines. The implications of these research findings are discussed.  相似文献   

4.
Integrated Science, Technology, Engineering and Mathematics (STEM) education is an emerging approach to improve students’ achievement and interest in STEM disciplines. However, the implementation of integrated STEM education depends strongly on teachers’ competence, which entails, among others, teachers’ attitudes. Nonetheless, not much is known about the factors that influence teachers’ attitudes toward teaching integrated STEM. Therefore this paper uses a survey method to get insight into the relationship between three groups of variables and teachers’ attitudes toward teaching integrated STEM: teacher background characteristics, personal attitudes and school context variables. The results of the multiple regression analyses reveal three variables that are positively linked with teachers’ attitudes: professional development, personal relevance of science and social context. Moreover two variables show a negative correlation: having more than 20 years of teaching experience and experience in mathematics. The results of this study provide valuable information about factors related to teachers’ attitudes toward teaching integrated STEM. Moreover, these results can be deployed by school administrators to guide them when implementing integrated STEM education in their school.  相似文献   

5.
This paper, based in Northern Ireland, is a case study of an innovative programme which places year 3 B.Ed. post-primary student teachers of Technology and Design into industry for a five-day period. The industrial placement programme is set in an international context of evolving pre-service field placements and in a local context defined by the Northern Ireland Curriculum (CCEA 2007); a rationale for the inclusion of Technology and Design within that curriculum; and the promotion of a STEM (Science, Technology, Engineering and Mathematics) agenda. Undertaken in collaboration with a range of industrial partners, the placements aim to give the student teachers an opportunity to spend time in industry. All the students concerned started their teacher education degree straight from school and therefore are without industrial experience. As a result of the placements the students gained valuable industrial experience and thereby further enhanced their working knowledge and understanding in their main subject area of Technology and Design, in particular, and other curricular areas, in general. The students report many benefits, both personally and professionally, to be gained from the placements typically the opportunity to see a range of industrial processes, many of which they are required to teach, and to gain a better understanding of the link between content of Technology and Design education and the activities of industry. This case study is based on feedback from the 2010 to 2011 cohort of students whose comments confirm the inherent value of exposing student teachers to industrial environments.  相似文献   

6.
International Journal of Technology and Design Education - Science, Technology, Engineering and Mathematics (STEM) education has been identified as a keystone teaching and learning area for...  相似文献   

7.
This study illustrates the use of the DEPTH model in the development of professional development for secondary teachers of Engineering. In the school context of Western Australia, Engineering is a new upper school subject which will be taught by Design and Technology teachers, the majority of whom have neither taught at this level before, nor taught Engineering content. The multidimensionality of the DEPTH model was particularly appropriate in identifying the range of felt needs of these teachers to address the new curriculum in Engineering.  相似文献   

8.
International Journal of Technology and Design Education - Research and design activities are becoming more important in Science, Technology, Engineering and Mathematics (STEM) and D&T...  相似文献   

9.
Technology-mediated teaching and learning enables access to educational opportunities, irrespective of locality, ruruality or remoteness. The design, development and delivery of technology enhanced learning in pre-service teacher education programs is therefore gaining momentum, both in Australia and internationally. Much research regarding online, or blended learning, has focussed on theoretically-founded learning areas, with less attention directed toward fundamentally practical learning areas, such as Design and Technology Education. Situated within the Bachelor of Education (Early Childhood Education, Primary, and Primary/Middle) degrees at the University of South Australia, Australia, this study captures the design, development and delivery of a blended Design and Technology course with first and third year pre-service teachers. Drawing on course learning analytics, pre-service teacher responses, and the reflective practice of teaching academics, this paper highlights the facilitators and challenges in transitioning to a blended model of curriculum delivery that addresses the contexts of the Australian Curriculum: Technologies.  相似文献   

10.
As cultural, social, political and economic changes take place, the secondary or high school curriculum should reflect and respond to changing needs and aspirations of students. Technology Education has been proactive in this arena as it has transformed over the decades to meet ever-changing societal needs. The most recent change to the discipline has been to add engineering and, as a result, adopting a new name and curriculum-Engineering and Technology Education. The added component and name change in Technology Education is causing discussions about what the new direction means, what professional preparation changes will be incurred, and what work graduating students will be prepared to do. In light of these changes, this study investigated perceptions of high school students in the United States of America about engineering and technology courses they take. To investigate whether students’ perceptions are in accord with current changes in Engineering and Technology Education, 316 students enrolled in engineering and technology courses in Georgia schools that have an affiliation with the Georgia Engineering and Technology Education Association (GETEA) were surveyed. According to data analyses, students’ perceptions can be divided into two factors. Educational Value of Course (factor 1) was extracted from statements measuring the degree to which the courses prepare students for employment and provide them with information regarding future employment. Personal Relevance of Course (factor 2) was derived from statements measuring students’ perceptions about links between engineering and technology education and their personal lives. Such findings suggest these students valued their engineering and technology courses, planned to continue their education, made good grades, and had varied types of career expectations for jobs such as design engineers and architects.  相似文献   

11.
International Journal of Technology and Design Education - Integrated Science, Technology, Engineering, and Mathematics (STEM) education is recognised as the latest development stage on the pathway...  相似文献   

12.
STEM-oriented engineering design practice has become recognized increasingly by technology education professionals in Taiwan. This study sought to examine the effectiveness of the application of an integrative STEM approach within engineering design practices in high school technology education in Taiwan. A quasi-experimental study was conducted to investigate the respective learning performance of students studying a STEM engineering module compared to students studying the technology education module. The student performances for conceptual knowledge, higher-order thinking skills and engineering design project were assessed. The data were analyzed using quantitative (t test, ANOVA, ANCOVA, correlation analysis) approaches. The findings showed that the participants in the STEM engineering module outperformed significantly the participants studying the technology education module in the areas of conceptual knowledge, higher-order thinking skills, and the design project activity. A further analysis showed that the key differences in the application of design practice between the two groups were (a) their respective problem prediction and (b) their analysis capabilities. The results supported the positive effect of the use of an integrative STEM approach in high school technology education in Taiwan.  相似文献   

13.
Many scholars claimed the integration of science, technology, engineering and mathematics (STEM) education is beneficial to the national economy and teachers and institutes have been working to develop integrated education programs. This study examined a project-based learning (PjBL) activity that integrated STEM using survey and interview methods. The participants were 30 freshmen with engineering related backgrounds from five institutes of technology in Taiwan. Questionnaires and semi-structured interviews were used to examine student attitudes towards STEM before and after the PjBL activity. The results of the survey showed that students’ attitudes to the subject of engineering changed significantly. Most of the students recognized the importance of STEM in the science and engineering disciplines; they mentioned in interview that the possession of professional science knowledge is useful to their future career and that technology may improve our lives and society, making the world a more convenient and efficient place. In conclusion, combining PjBL with STEM can increase effectiveness, generate meaningful learning and influence student attitudes in future career pursuit. Students are positive towards combining PjBL with STEM.  相似文献   

14.
Engineering design practice has been recognized as an effective approach to engage students in STEM learning. However, we noticed that students who possessed strong STEM knowledge did not necessarily perform well on their design projects. Thus, this study sought to explore factors that shaped students’ design objectives and means. A design-based research was adopted using a single group teaching experiment, in which students’ performance in relation to conceptual knowledge, engineering design practice, and their STEM attitudes were assessed in different design complexity groups. Based on the findings of this study, we concluded that students’ interest and metacognitive skills might be the key factors affecting their motivation during the engineering design process. Their abilities in predictive analysis and testing/revising were core elements affecting their design thinking. Our work provides preliminary evidence on how students form and present different design purposes and objectives in an engineering design project.  相似文献   

15.
Today, technology education in Sweden is both a high-status and a low-status phenomenon. Positive values such as economic growth, global competitiveness and the sustainability of the welfare state are often coupled with higher engineering education and sometimes even upper secondary education. Negative values, on the other hand, are often associated with primary and lower secondary education in this subject. Within the realm of technology education at such lower levels of schooling in Sweden, different actors have often called for reformed curricula or better teacher training, owing to the allegedly poor state of technology education in schools. Recurring demands for a change in technology education are nothing unique from an historical point of view, however. In fact, the urge to influence teaching and learning in technology is much older than the school subject itself. The aim of this article is to describe and analyse some key patterns in technology education in Swedish elementary and compulsory schools from 1842 to 2010. This study thus deals with how technological content has developed over time in these school forms as well as how different actors in and outside the school have dealt with the broader societal view of what is considered as important knowledge in technology as well as what kind of technology has particular significance. The long period of investigation from 1842 to 2010 as well as a double focus on technology as scattered educational content and a subject called Technology make it possible to identify recurring patterns, which we have divided into three overarching themes: Technological literacy and the democratic potential of technological knowledge, The relationship between school technology and higher forms of technology education and The relationship between technology and science.  相似文献   

16.
International Journal of Technology and Design Education - The study aimed to investigate the effect of an interdisciplinary STEM course on children’s attitudes of learning and engineering...  相似文献   

17.
There is a clear contemporary interest for developing science, technology, engineering, and mathematics (STEM) at schools. Besides, there exist a lot of research that justify the importance of spatial ability to obtain success in STEM subjects. Nevertheless, the spatial ability is relatively ignored in the general practice of teaching and learning in the K-12 setting. The goal of this paper is to analyse the evolution of spatial abilities of students that assist to a STEM course. Additionally, the evolution of their mechanical reasoning is also analysed. The STEM course was designed and implemented for the first time in a 6th grade class (primary school) and a 7th grade class (secondary school) throughout a whole academic year. First, the spatial ability and the mechanical reasoning of the students were assessed with the corresponding prepared pre-tests. Then, after finishing the STEM course, the students were tested with analogous post-tests. An exhaustive analysis of the obtained results is provided in the paper. It is shown that the spatial ability of the students was definitely improved. Furthermore, this improvement was statistically significant. Results also evidenced that the mechanical reasoning of the participants was also improved, although the improvement was not statistically significant. Moreover, this research showed that, in general, obtained results do not depend significantly on the gender of the participants. Finally, results manifested the statistically significant difference of spatial ability between 6th grade and 7th grade students. The difference between grade levels was not as significant in the mechanical reasoning case.  相似文献   

18.
This paper explores the idea that a sense of school subject image is a necessary feature of curriculum management and a potent force for change. The discussion centres on the view that all school subjects have an image and that if those intimately involved with the subject do not control the image then someone else does! In such circumstances the image is the product of past encounters and old euphemisms and is unlikely to hold the changed realities.The UK developments in Design and Technology education (the term Design and Technology is used to denote the school subject defined under this heading by the UK National Curriculum, 1995) have created something of an image problem which has interesting international parallels. Some of these problems are due to clearly discernible internal tensions and an ambiguous relationship with other subject areas.Through greater attention to subject image internal controversies might be acknowledged and resolved, relationships with other subject areas can be more meaningfully understood and practitioners can be helped to make sense of curriculum change.  相似文献   

19.
Despite the large body of research on students’ educational and career choices in the field of technology, design, and science, we still lack a clear understanding of how to stimulate more students to opt for a study path or career within the STEM fields (Science, Technology, Engineering, Mathematics). In this article, we outline a new theoretical framework to describe how students’ implicit belief about the malleability of their intelligence can be an important precursor of their STEM educational and career choice behavior. Based on the different bodies of literature about STEM choices and about students’ implicit beliefs about their abilities, we present three hypothetical pathways, in the form of testable models, that describe potential relations between the implicit theories that students may hold regarding the malleability of their STEM ability and students’ intentions to pursue a STEM career. Each pathway outlines a specific mediating factor influencing this relation: (a) self-efficacy beliefs, (b) stereotypical thinking, and (c) motivational beliefs. These pathways provide more insight into the underlying mechanisms that may affect STEM choice behavior. In our view, such a theoretical underpinning is a necessary prerequisite for further scientific investigation into the potential relations between students’ implicit beliefs about their potential development, relevant psychological variables, and STEM choice behavior. Furthermore, we believe it provides a theoretical foundation for practical interventions that aim to stimulate STEM choice behavior.  相似文献   

20.
Cultivating students’ design abilities can be highly beneficial for the learning of science, technology, engineering, and mathematics (STEM) concepts, and development of higher-order thinking capabilities (National Academy of Engineering and National Research Council in STEM integration in k-12 education: status, prospects, and an agenda for research, The National Academies Press, Washington, 2014). Therefore, examining students’ strategies, how they distribute their cognitive effort, and confront STEM concepts during design experiences, can help educators identify effective and developmentally appropriate methods for teaching and scaffolding design activities for students (National Research Council in standards for k-12 engineering education? The National Academies Press, Washington, 2010). Yet, educational researchers have only recently begun examining students’ engineering design cognition at the P-12 level, despite reports such as Standards for K-12 Engineering Education? (National Research Council 2010) designating this area of research as lackluster. Of the recent studies that have investigated engineering design cognition at the P-12 level, the primary method of investigation has been verbal protocol analysis using a think-aloud method (Grubbs in further characterization of high school pre- and non-engineering students’ cognitive activity during engineering design, 2016). This methodology captures participants’ verbalization of their thought process as they solve a design challenge. Analysis is typically conducted by applying a pre-determined coding scheme, or one that emerges, to determine the distribution of a group’s or an individual’s cognition. Consequently, researchers have employed a variety of coding schemes to examine and describe students’ design cognition. Given the steady increase of explorations into connections between P-12 engineering design cognition and development of student cognitive competencies, it becomes increasingly important to understand and choose the most appropriate coding schemes available, as each has its own intent and characteristics. Therefore, this article presents an examination of recent P-12 design cognition coding schemes with the purpose of providing a background for selecting and applying a scheme for a specific outcome, which can better enable the synthesis and comparison of findings across studies. Ultimately, the aim is to aid others in choosing an appropriate coding scheme, with cognizance of research analysis intent and characteristics of research design, while improving the intentional scaffolding and support of design challenges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号