首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 582 毫秒
1.
Abstract

In this paper we consider a compound Poisson risk model with a constant interest force. We investigate the joint distribution of the surplus immediately before and after ruin. By adapting the techniques in Sundt and Teugels (1995), we obtain integral equations satisfied by the joint distribution function and a Lundberg-type inequality. In the case of zero initial reserve and the case of exponential claim sizes, we obtain explicit expressions for the joint distribution function.  相似文献   

2.
Abstract

In this paper an extension of the semi-Markovian risk model studied by Albrecher and Boxma (2005) is considered by allowing for general interclaim times. In such a model, we follow the ideas of Cheung et al. (2010b) and consider a generalization of the Gerber-Shiu function by incorporating two more random variables in the traditional penalty function, namely, the minimum surplus level before ruin and the surplus level immediately after the second last claim prior to ruin. It is shown that the generalized Gerber-Shiu function satisfies a matrix defective renewal equation. Detailed examples are also considered when either the interclaim times or the claim sizes are exponentially distributed. Finally, we also consider the case where the claim arrival process follows a Markovian arrival process. Probabilistic arguments are used to derive the discounted joint distribution of four random variables of interest in this risk model by capitalizing on an existing connection with a particular fluid flow process.  相似文献   

3.

In this paper, we consider a discrete time risk model. First we discuss the classical model, both exponential and non-exponential upper bounds for ruin probabilities are obtained by using martingale inequalities. Then similar results are obtained for the model with investment income.  相似文献   

4.
Abstract

The seminal paper by Gerber and Shiu (1998) unified and extended the study of the event of ruin and related quantities, including the time at which the event of ruin occurs, the deficit at the time of ruin, and the surplus immediately prior to ruin. The first two of these quantities are fundamentally important for risk management techniques that utilize the ideas of Value-at-Risk and Tail Value-at-Risk. As is well known, calculation of these and related quantities requires knowledge of the associated probability distributions. In this paper we derive an explicit expression for the joint (defective) distribution of the time to ruin, the surplus immediately prior to ruin, and the deficit at ruin in the classical compound Poisson risk model. As a by-product, we obtain expressions for the three bivariate distributions generated by the time to ruin, the surplus prior to ruin, and the deficit at ruin. Finally, we consider mixed Erlang claim sizes and show how the joint (defective) distribution of the time to ruin, the surplus prior to ruin, and the deficit at ruin can be calculated.  相似文献   

5.

We study ruin probabilities for generalized life insurance programs. These programs include among others whole life and long term care contracts. Clearly, in such programs the claims in successive years are dependent, hence the structure of our problem is different from that of ruin probabilities in general insurance where claims over time are independent. First, we develop algorithms calculating the ruin probabilities for life and LTC insurance programs. Further, upper and lower bounds for these probabilities are derived. These new bounds take into account the joint distribution of claims over time.  相似文献   

6.
Abstract

This paper studies the joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin. The time of ruin is analyzed in terms of its Laplace transforms, which can naturally be interpreted as discounting. Hence the classical risk theory model is generalized by discounting with respect to the time of ruin. We show how to calculate an expected discounted penalty, which is due at ruin and may depend on the deficit at ruin and on the surplus immediately before ruin. The expected discounted penalty, considered as a function of the initial surplus, satisfies a certain renewal equation, which has a probabilistic interpretation. Explicit answers are obtained for zero initial surplus, very large initial surplus, and arbitrary initial surplus if the claim amount distribution is exponential or a mixture of exponentials. We generalize Dickson’s formula, which expresses the joint distribution of the surplus immediately prior to and at ruin in terms of the probability of ultimate ruin. Explicit results are obtained when dividends are paid out to the stockholders according to a constant barrier strategy.  相似文献   

7.
Abstract

In this paper I show how methods that have been applied to derive results for the classical risk process can be adapted to derive results for a class of risk processes in which claims occur as a renewal process. In particular, claims occur as an Erlang process. I consider the problem of finding the survival probability for such risk processes and then derive expressions for the probability and severity of ruin and for the probability of absorption by an upper barrier. Finally, I apply these results to consider the problem of finding the distribution of the maximum deficit during the period from ruin to recovery to surplus level 0.  相似文献   

8.
We present an inventory of non-exponential bounds for ruin probabilities and stop-loss premiums in the general Sparre-Andersen model (renewal model) of risk theory. Various additional bounds are given if one assumes that the ladder height distribution F associated with the risk process belongs to a certain class of distributions, in particular if it is concave or it exhibits a (positive or negative) aging property. In most cases, these bounds are shown to improve existing ones in the literature and/or possess the correct asymptotic behaviour when the distribution F is subexponential. Since in the classical (compound Poisson) risk model the ladder height distribution is always concave, all the bounds given in the paper are also valid for this model. Finally, in many cases the results of the paper are also valid for any compound geometric distribution.  相似文献   

9.
Abstract

As investment plays an increasingly important role in the insurance business, ruin analysis in the presence of stochastic interest (or stochastic return on investments) has become a key issue in modern risk theory, and the related results should be of interest to actuaries. Although the study of insurance risk models with stochastic interest has attracted a fair amount of attention in recent years, many significant ruin problems associated with these models remain to be investigated. In this paper we consider a risk process with stochastic interest in which the basic risk process is the classical risk process and the stochastic interest process (or the stochastic return-on-investmentgenerating process) is a compound Poisson process with positive drift. Within this framework, we first derive an integro-differential equation for the Gerber-Shiu expected discounted penalty function, and then obtain an exact solution to the equation. We also obtain closed-form expressions for the expected discounted penalty function in some special cases. Finally, we examine a lower bound for the ruin probability of the risk process.  相似文献   

10.

In this paper we consider a risk process in which claim inter-arrival times have a phase-type(2) distribution, a distribution with a density satisfying a second order linear differential equation. We consider some ruin related problems. In particular, we consider the compound geometric representation of the infinite time survival probability, as well as the (defective) distributions of the surplus immediately prior to ruin and of the deficit at ruin. We also consider explicit solutions for the infinite time ruin probability in the case where the individual claim amount distribution is phase-type.  相似文献   

11.
In this article, we consider an extension to the renewal or Sparre Andersen risk process by introducing a dependence structure between the claim sizes and the interclaim times through a Farlie–Gumbel–Morgenstern copula proposed by Cossette et al. (2010) for the classical compound Poisson risk model. We consider that the inter-arrival times follow the Erlang(n) distribution. By studying the roots of the generalised Lundberg equation, the Laplace transform (LT) of the expected discounted penalty function is derived and a detailed analysis of the Gerber–Shiu function is given when the initial surplus is zero. It is proved that this function satisfies a defective renewal equation and its solution is given through the compound geometric tail representation of the LT of the time to ruin. Explicit expressions for the discounted joint and marginal distribution functions of the surplus prior to the time of ruin and the deficit at the time of ruin are derived. Finally, for exponential claim sizes explicit expressions and numerical examples for the ruin probability and the LT of the time to ruin are given.  相似文献   

12.
We consider the classical Sparre-Andersen risk process perturbed by a Wiener process, and study the joint distribution of the ruin time and the aggregate claim amounts until ruin by determining its Laplace transform. This is first done when the claim amounts follow respectively an exponential/Phase-type distribution, in which case we also compute the distribution of recovery time and study the case of a barrier dividend. Then the general distribution is considered when ruin occurs by oscillation, in which case a renewal equation is derived.  相似文献   

13.
Abstract

This paper presents a general probabilistic model, including stochastic discounting, for life insurance contracts, either a single policy or a portfolio of policies. In § 4 we define prospective reserves and annual losses in terms of our model and we show that these are generalisations of the corresponding concepts in conventional life insurance mathematics. Our main results are in § 5 where we use the martingale property of the loss process to derive upper bounds for the probability of ruin for the portfolio. These results are illustrated by two numerical examples in § 6.  相似文献   

14.
The main focus of this paper is to extend the analysis of ruin-related quantities to the delayed renewal risk models. First, the background for the delayed renewal risk model is introduced and a general equation that is used as a framework is derived. The equation is obtained by conditioning on the first drop below the initial surplus level. Then, we consider the deficit at ruin among many random variables associated with ruin. The properties of the distribution function (DF) of the proper deficit are examined in particular.  相似文献   

15.
Abstract

In this paper we study the Gerber-Shiu discounted penalty function for the ordinary renewal risk model modified by the constant interest on the surplus. Explicit answers are expressed by an infinite series, and a relational formula for some important joint density functions is derived. Applications of the results to the compound Poisson model are given. Finally, a lower bound and an upper bound for the ultimate ruin probability are derived.  相似文献   

16.
Abstract

In this paper we derive some results on the dividend payments prior to ruin in a Markovmodulated risk process in which the rate for the Poisson claim arrival process and the distribution of the claim sizes vary in time depending on the state of an underlying (external) Markov jump process {J(t); t ≥ 0}. The main feature of the model is the flexibility in modeling the arrival process in the sense that periods with very frequent arrivals and periods with very few arrivals may alternate, and that the states of {J(t); t ≥ 0} could describe, for example, epidemic types in health insurance or weather conditions in car insurance. A system of integro-differential equations with boundary conditions satisfied by the nth moment of the present value of the total dividends prior to ruin, given the initial environment state, is derived and solved. We show that the probabilities that the surplus process attains a dividend barrier from the initial surplus without first falling below zero and the Laplace transforms of the time that the surplus process first hits a barrier without ruin occurring can be expressed in terms of the solution of the above-mentioned system of integro-differential equations. In the two-state model, explicit results are obtained when both claim amounts are exponentially distributed.  相似文献   

17.
Abstract

We examine properties of risk measures that can be considered to be in line with some “best practice” rules in insurance, based on solvency margins. We give ample motivation that all economic aspects related to an insurance portfolio should be considered in the definition of a risk measure. As a consequence, conditions arise for comparison as well as for addition of risk measures. We demonstrate that imposing properties that are generally valid for risk measures, in all possible dependency structures, based on the difference of the risk and the solvency margin, though providing opportunities to derive nice mathematical results, violates best practice rules. We show that so-called coherent risk measures lead to problems. In particular we consider an exponential risk measure related to a discrete ruin model, depending on the initial surplus, the desired ruin probability, and the risk distribution.  相似文献   

18.
Abstract

We consider a compound Poisson risk model in which part of the premium is paid to the shareholders as dividends when the surplus exceeds a specified threshold level. In this model we are interested in computing the moments of the total discounted dividends paid until ruin occurs. However, instead of employing the traditional argument, which involves conditioning on the time and amount of the first claim, we provide an alternative probabilistic approach that makes use of the (defective) joint probability density function of the time of ruin and the deficit at ruin in a classical model without a threshold. We arrive at a general formula that allows us to evaluate the moments of the total discounted dividends recursively in terms of the lower-order moments. Assuming the claim size distribution is exponential or, more generally, a finite shape and scale mixture of Erlangs, we are able to solve for all necessary components in the general recursive formula. In addition to determining the optimal threshold level to maximize the expected value of discounted dividends, we also consider finding the optimal threshold level that minimizes the coefficient of variation of discounted dividends. We present several numerical examples that illustrate the effects of the choice of optimality criterion on quantities such as the ruin probability.  相似文献   

19.
In this paper, we study some drawdown-related quantities in the context of the renewal insurance risk process with general interarrival times and phase-type distributed jump sizes. We make use of some recent results on the two-sided exit problem for the spectrally negative Markov additive process and a fluid flow analogy between certain queues and risk processes to solve for the two-sided exit problem of the renewal insurance risk process. The two-sided exit quantities are later shown to be central to the analysis of drawdown quantities including the drawdown time, the drawdown size, the running maximum (minimum) at the drawdown time, the last running maximum time prior to drawdown, the number of jumps before drawdown and the number of excursions from running maximum before drawdown. Finally, we consider another application of our methodology for the study of the expected discounted dividend payments until ruin.  相似文献   

20.
Abstract

Dufresne et al. (1991) introduced a general risk model defined as the limit of compound Poisson processes. Such a model is either a compound Poisson process itself or a process with an infinite number of small jumps. Later, in a series of now classical papers, the joint distribution of the time of ruin, the surplus before ruin, and the deficit at ruin was studied (Gerber and Shiu 1997, 1998a, 1998b; Gerber and Landry 1998). These works use the classical and the perturbed risk models and hint that the results can be extended to gamma and inverse Gaussian risk processes.

In this paper we work out this extension to a generalized risk model driven by a nondecreasing Lévy process. Unlike the classical case that models the individual claim size distribution and obtains from it the aggregate claims distribution, here the aggregate claims distribution is known in closed form. It is simply the one-dimensional distribution of a subordinator. Embedded in this wide family of risk models we find the gamma, inverse Gaussian, and generalized inverse Gaussian processes. Expressions for the Gerber-Shiu function are given in some of these special cases, and numerical illustrations are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号