首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Interest in the use of “big data” when it comes to forecasting macroeconomic time series such as private consumption or unemployment has increased; however, applications to the forecasting of GDP remain rather rare. This paper incorporates Google search data into a bridge equation model, a version of which usually belongs to the suite of forecasting models at central banks. We show how such big data information can be integrated, with an emphasis on the appeal of the underlying model in this respect. As the decision as to which Google search terms should be added to which equation is crucial —- both for the forecasting performance itself and for the economic consistency of the implied relationships —- we compare different (ad-hoc, factor and shrinkage) approaches in terms of their pseudo real time out-of-sample forecast performances for GDP, various GDP components and monthly activity indicators. We find that sizeable gains can indeed be obtained by using Google search data, where the best-performing Google variable selection approach varies according to the target variable. Thus, assigning the selection methods flexibly to the targets leads to the most robust outcomes overall in all layers of the system.  相似文献   

2.
This paper exploits cross-sectional variation at the level of U.S. counties to generate real-time forecasts for the 2020 U.S. presidential election. The forecasting models are trained on data covering the period 2000–2016, using high-dimensional variable selection techniques. Our county-based approach contrasts the literature that focuses on national and state level data but uses longer time periods to train their models. The paper reports forecasts of popular and electoral college vote outcomes and provides a detailed ex-post evaluation of the forecasts released in real time before the election. It is shown that all of these forecasts outperform autoregressive benchmarks. A pooled national model using One-Covariate-at-a-time-Multiple-Testing (OCMT) variable selection significantly outperformed all models in forecasting the U.S. mainland national vote share and electoral college outcomes (forecasting 236 electoral votes for the Republican party compared to 232 realized). This paper also shows that key determinants of voting outcomes at the county level include incumbency effects, unemployment, poverty, educational attainment, house price changes, and international competitiveness. The results are also supportive of myopic voting: economic fluctuations realized a few months before the election tend to be more powerful predictors of voting outcomes than their long-horizon analogs.  相似文献   

3.
This paper examines the theoretical and empirical properties of a supervised factor model based on combining forecasts using principal components (CFPC), in comparison with two other supervised factor models (partial least squares regression, PLS, and principal covariate regression, PCovR) and with the unsupervised principal component regression, PCR. The supervision refers to training the predictors for a variable to forecast. We compare the performance of the three supervised factor models and the unsupervised factor model in forecasting of U.S. CPI inflation. The main finding is that the predictive ability of the supervised factor models is much better than the unsupervised factor model. The computation of the factors can be doubly supervised together with variable selection, which can further improve the forecasting performance of the supervised factor models. Among the three supervised factor models, the CFPC best performs and is also most stable. While PCovR also performs well and is stable, the performance of PLS is less stable over different out-of-sample forecasting periods. The effect of supervision gets even larger as forecast horizon increases. Supervision helps to reduce the number of factors and lags needed in modelling economic structure, achieving more parsimony.  相似文献   

4.
This study proposes a new, novel crude oil price forecasting method based on online media text mining, with the aim of capturing the more immediate market antecedents of price fluctuations. Specifically, this is an early attempt to apply deep learning techniques to crude oil forecasting, and to extract hidden patterns within online news media using a convolutional neural network (CNN). While the news-text sentiment features and the features extracted by the CNN model reveal significant relationships with the price change, they need to be grouped according to their topics in the price forecasting in order to obtain a greater forecasting accuracy. This study further proposes a feature grouping method based on the Latent Dirichlet Allocation (LDA) topic model for distinguishing effects from various online news topics. Optimized input variable combination is constructed using lag order selection and feature selection methods. Our empirical results suggest that the proposed topic-sentiment synthesis forecasting models perform better than the older benchmark models. In addition, text features and financial features are shown to be complementary in producing more accurate crude oil price forecasts.  相似文献   

5.
Airline traffic forecasting is important to airlines and regulatory authorities. This paper examines a number of approaches to forecasting short- to medium-term air traffic flows. It contributes as a rare replication, testing a variety of alternative modelling approaches. The econometric models employed include autoregressive distributed lag (ADL) models, time-varying parameter (TVP) models and an automatic method for econometric model specification. A vector autoregressive (VAR) model and various univariate alternatives are also included to deliver unconditional forecast comparisons. Various approaches for taking into account interactions between contemporaneous air traffic flows are examined, including pooled ADL models and the enhanced models with the addition of a “world trade” variable. Based on the analysis of a number of forecasting error measures, it is concluded that pooled ADL models that include the “world trade” variable outperform the alternatives, and in particular univariate methods; and, second, that automatic modelling procedures are enhanced through judgmental intervention. In contrast to earlier results, the TVP models do not improve accuracy. Depending on the preferred error measure, the difference in accuracy may be substantial.  相似文献   

6.
Copulas provide an attractive approach to the construction of multivariate distributions with flexible marginal distributions and different forms of dependences. Of particular importance in many areas is the possibility of forecasting the tail-dependences explicitly. Most of the available approaches are only able to estimate tail-dependences and correlations via nuisance parameters, and cannot be used for either interpretation or forecasting. We propose a general Bayesian approach for modeling and forecasting tail-dependences and correlations as explicit functions of covariates, with the aim of improving the copula forecasting performance. The proposed covariate-dependent copula model also allows for Bayesian variable selection from among the covariates of the marginal models, as well as the copula density. The copulas that we study include the Joe-Clayton copula, the Clayton copula, the Gumbel copula and the Student’s t-copula. Posterior inference is carried out using an efficient MCMC simulation method. Our approach is applied to both simulated data and the S&P 100 and S&P 600 stock indices. The forecasting performance of the proposed approach is compared with those of other modeling strategies based on log predictive scores. A value-at-risk evaluation is also performed for the model comparisons.  相似文献   

7.
Factor models have been applied extensively for forecasting when high‐dimensional datasets are available. In this case, the number of variables can be very large. For instance, usual dynamic factor models in central banks handle over 100 variables. However, there is a growing body of literature indicating that more variables do not necessarily lead to estimated factors with lower uncertainty or better forecasting results. This paper investigates the usefulness of partial least squares techniques that take into account the variable to be forecast when reducing the dimension of the problem from a large number of variables to a smaller number of factors. We propose different approaches of dynamic sparse partial least squares as a means of improving forecast efficiency by simultaneously taking into account the variable forecast while forming an informative subset of predictors, instead of using all the available ones to extract the factors. We use the well‐known Stock and Watson database to check the forecasting performance of our approach. The proposed dynamic sparse models show good performance in improving efficiency compared to widely used factor methods in macroeconomic forecasting. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Analysis, model selection and forecasting in univariate time series models can be routinely carried out for models in which the model order is relatively small. Under an ARMA assumption, classical estimation, model selection and forecasting can be routinely implemented with the Box–Jenkins time domain representation. However, this approach becomes at best prohibitive and at worst impossible when the model order is high. In particular, the standard assumption of stationarity imposes constraints on the parameter space that are increasingly complex. One solution within the pure AR domain is the latent root factorization in which the characteristic polynomial of the AR model is factorized in the complex domain, and where inference questions of interest and their solution are expressed in terms of the implied (reciprocal) complex roots; by allowing for unit roots, this factorization can identify any sustained periodic components. In this paper, as an alternative to identifying periodic behaviour, we concentrate on frequency domain inference and parameterize the spectrum in terms of the reciprocal roots, and, in addition, incorporate Gegenbauer components. We discuss a Bayesian solution to the various inference problems associated with model selection involving a Markov chain Monte Carlo (MCMC) analysis. One key development presented is a new approach to forecasting that utilizes a Metropolis step to obtain predictions in the time domain even though inference is being carried out in the frequency domain. This approach provides a more complete Bayesian solution to forecasting for ARMA models than the traditional approach that truncates the infinite AR representation, and extends naturally to Gegenbauer ARMA and fractionally differenced models.  相似文献   

9.
This paper discusses pooling versus model selection for nowcasting with large datasets in the presence of model uncertainty. In practice, nowcasting a low‐frequency variable with a large number of high‐frequency indicators should account for at least two data irregularities: (i) unbalanced data with missing observations at the end of the sample due to publication delays; and (ii) different sampling frequencies of the data. Two model classes suited in this context are factor models based on large datasets and mixed‐data sampling (MIDAS) regressions with few predictors. The specification of these models requires several choices related to, amongst other things, the factor estimation method and the number of factors, lag length and indicator selection. Thus there are many sources of misspecification when selecting a particular model, and an alternative would be pooling over a large set of different model specifications. We evaluate the relative performance of pooling and model selection for nowcasting quarterly GDP for six large industrialized countries. We find that the nowcast performance of single models varies considerably over time, in line with the forecasting literature. Model selection based on sequential application of information criteria can outperform benchmarks. However, the results highly depend on the selection method chosen. In contrast, pooling of nowcast models provides an overall very stable nowcast performance over time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We use a unique set of prices from the German EPEX market and take a closer look at the fine structure of intraday markets forelectricity, with their continuous trading for individual load periods up to 30 min before delivery. We apply the least absolute shrinkage and selection operator (LASSO) in order to gain statistically sound insights on variable selection and provide recommendations for very short-term electricity price forecasting.  相似文献   

11.
This paper studies the predictability of cryptocurrency time series. We compare several alternative univariate and multivariate models for point and density forecasting of four of the most capitalized series: Bitcoin, Litecoin, Ripple and Ethereum. We apply a set of crypto-predictors and rely on dynamic model averaging to combine a large set of univariate dynamic linear models and several multivariate vector autoregressive models with different forms of time variation. We find statistically significant improvements in point forecasting when using combinations of univariate models, and in density forecasting when relying on the selection of multivariate models. Both schemes deliver sizable directional predictability.  相似文献   

12.
This paper proposes a cluster HAR-type model that adopts the hierarchical clustering technique to form the cascade of heterogeneous volatility components. In contrast to the conventional HAR-type models, the proposed cluster models are based on the relevant lagged volatilities selected by the cluster group Lasso. Our simulation evidence suggests that the cluster group Lasso dominates other alternatives in terms of variable screening and that the cluster HAR serves as the top performer in forecasting the future realized volatility. The forecasting superiority of the cluster models are also demonstrated in an empirical application where the highest forecasting accuracy tends to be achieved by separating the jumps from the continuous sample path volatility process.  相似文献   

13.
Retailers supply a wide range of stock keeping units (SKUs), which may differ for example in terms of demand quantity, demand frequency, demand regularity, and demand variation. Given this diversity in demand patterns, it is unlikely that any single model for demand forecasting can yield the highest forecasting accuracy across all SKUs. To save costs through improved forecasting, there is thus a need to match any given demand pattern to its most appropriate prediction model. To this end, we propose an automated model selection framework for retail demand forecasting. Specifically, we consider model selection as a classification problem, where classes correspond to the different models available for forecasting. We first build labeled training data based on the models’ performances in previous demand periods with similar demand characteristics. For future data, we then automatically select the most promising model via classification based on the labeled training data. The performance is measured by economic profitability, taking into account asymmetric shortage and inventory costs. In an exploratory case study using data from an e-grocery retailer, we compare our approach to established benchmarks. We find promising results, but also that no single approach clearly outperforms its competitors, underlying the need for case-specific solutions.  相似文献   

14.
The relative performances of forecasting models change over time. This empirical observation raises two questions. First, is the relative performance itself predictable? Second, if so, can it be exploited in order to improve the forecast accuracy? We address these questions by evaluating the predictive abilities of a wide range of economic variables for two key US macroeconomic aggregates, namely industrial production and inflation, relative to simple benchmarks. We find that business cycle indicators, financial conditions, uncertainty and measures of past relative performances are generally useful for explaining the models’ relative forecasting performances. In addition, we conduct a pseudo-real-time forecasting exercise, where we use the information about the conditional performance for model selection and model averaging. The newly proposed strategies deliver sizable improvements over competitive benchmark models and commonly-used combination schemes. The gains are larger when model selection and averaging are based on both financial conditions and past performances measured at the forecast origin date.  相似文献   

15.
Forecasting temperature to price CME temperature derivatives   总被引:1,自引:0,他引:1  
This paper seeks to forecast temperatures in US cities in order to price temperature derivatives on the Chicago Mercantile Exchange (CME). The CME defines the average daily temperature underlying its contracts as the average of the maximum and minimum daily temperatures, yet all published work on temperature forecasting for pricing purposes has ignored this peculiar definition of the average and sought to model the average temperature directly. This paper is the first to look at the average temperature forecasting problem as an analysis of extreme values. The theory of extreme values guides model selection for temperature maxima and minima, and a forecast distribution for the CME’s daily average temperature is found through convolution. While univariate time series AR-GARCH and regression models generally yield superior point forecasts of temperatures, our extreme-value-based model consistently outperforms these models in density forecasting, the most important risk management tool.  相似文献   

16.
In this paper, we evaluate the role of a set of variables as leading indicators for Euro‐area inflation and GDP growth. Our leading indicators are taken from the variables in the European Central Bank's (ECB) Euro‐area‐wide model database, plus a set of similar variables for the US. We compare the forecasting performance of each indicator ex post with that of purely autoregressive models. We also analyse three different approaches to combining the information from several indicators. First, ex post, we discuss the use as indicators of the estimated factors from a dynamic factor model for all the indicators. Secondly, within an ex ante framework, an automated model selection procedure is applied to models with a large set of indicators. No future information is used, future values of the regressors are forecast, and the choice of the indicators is based on their past forecasting records. Finally, we consider the forecasting performance of groups of indicators and factors and methods of pooling the ex ante single‐indicator or factor‐based forecasts. Some sensitivity analyses are also undertaken for different forecasting horizons and weighting schemes of forecasts to assess the robustness of the results.  相似文献   

17.
Civil unrest can range from peaceful protest to violent furor, and researchers are working to monitor, forecast, and assess such events to allocate resources better. Twitter has become a real-time data source for forecasting civil unrest because millions of people use the platform as a social outlet. Daily word counts are used as model features, and predictive terms contextualize the reasons for the protest. To forecast civil unrest and infer the reasons for the protest, we consider the problem of Bayesian variable selection for the dynamic logistic regression model and propose using penalized credible regions to select parameters of the updated state vector. This method avoids the need for shrinkage priors, is scalable to high-dimensional dynamic data, and allows the importance of variables to vary in time as new information becomes available. A substantial improvement in both precision and F1-score using this approach is demonstrated through simulation. Finally, we apply the proposed model fitting and variable selection methodology to the problem of forecasting civil unrest in Latin America. Our dynamic logistic regression approach shows improved accuracy compared to the static approach currently used in event prediction and feature selection.  相似文献   

18.
Standard selection criteria for forecasting models focus on information that is calculated for each series independently, disregarding the general tendencies and performance of the candidate models. In this paper, we propose a new way to perform statistical model selection and model combination that incorporates the base rates of the candidate forecasting models, which are then revised so that the per-series information is taken into account. We examine two schemes that are based on the precision and sensitivity information from the contingency table of the base rates. We apply our approach on pools of either exponential smoothing or ARMA models, considering both simulated and real time series, and show that our schemes work better than standard statistical benchmarks. We test the significance and sensitivity of our results, discuss the connection of our approach to other cross-learning approaches, and offer insights regarding implications for theory and practice.  相似文献   

19.
The well-developed ETS (ExponenTial Smoothing, or Error, Trend, Seasonality) method incorporates a family of exponential smoothing models in state space representation and is widely used for automatic forecasting. The existing ETS method uses information criteria for model selection by choosing an optimal model with the smallest information criterion among all models fitted to a given time series. The ETS method under such a model selection scheme suffers from computational complexity when applied to large-scale time series data. To tackle this issue, we propose an efficient approach to ETS model selection by training classifiers on simulated data to predict appropriate model component forms for a given time series. We provide a simulation study to show the model selection ability of the proposed approach on simulated data. We evaluate our approach on the widely used M4 forecasting competition dataset in terms of both point forecasts and prediction intervals. To demonstrate the practical value of our method, we showcase the performance improvements from our approach on a monthly hospital dataset.  相似文献   

20.
This paper describes the methods used by Team Cassandra, a joint effort between IBM Research Australia and the University of Melbourne, in the GEFCom2017 load forecasting competition. An important first phase in the forecasting effort involved a deep exploration of the underlying dataset. Several data visualisation techniques were applied to help us better understand the nature and size of gaps, outliers, the relationships between different entities in the dataset, and the relevance of custom date ranges. Improved, cleaned data were then used to train multiple probabilistic forecasting models. These included a number of standard and well-known approaches, as well as a neural-network based quantile forecast model that was developed specifically for this dataset. Finally, model selection and forecast combination were used to choose a custom forecasting model for every entity in the dataset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号