首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
LetX be a random variable with distribution functionF and density functionf. Let ? and ψ be known measurable functions defined on the real lineR and the closed interval [0, 1], respectively. This paper proposes a smooth nonparametric estimate of the density functional \(\theta = \int\limits_R \phi (x) \psi \left[ {F (x)} \right]f^2 (x) dx\) based on a random sampleX 1, ...,X n fromF using a kernel functionk. The proposed estimate is given by \(\hat \theta = (n^2 a_n )^{ - 1} \mathop \sum \limits_{i = 1}^n \mathop \sum \limits_{j = 1}^n \phi (X_i ) \psi \left[ {\hat F (X_i )} \right]k\left[ {(X_i - X_j )/a_n } \right]\) , where \(\hat F(x) = n^{ - 1} \mathop \sum \limits_{i = 1}^n K\left[ {(x - X_i )/a_n } \right]\) with \(K (w) = \int\limits_{ - \infty }^w {k (u) } du\) . The estimate \(\hat \theta \) is shown to be consistent both in the weak and strong sense and is used to estimate the asymptotic relative efficiency of various nonparametric tests, with particular reference to those using the Chernoff-Savage statistic.  相似文献   

11.
12.
In this paper, we consider the estimation problem of individual weights of three objects. For the estimation we use the chemical balance weighing design and the criterion of D-optimality. We assume that the error terms ${\varepsilon_{i},\ i=1,2,\dots,n,}$ are a first-order autoregressive process. This assumption implies that the covariance matrix of errors depends on the known parameter ρ. We present the chemical balance weighing design matrix ${\widetilde{\bf X}}$ and we prove that this design is D-optimal in certain classes of designs for ${\rho\in[0,1)}$ and it is also D-optimal in the class of designs with the design matrix ${{\bf X} \in M_{n\times 3}(\pm 1)}$ for some ρ ≥ 0. We prove also the necessary and sufficient conditions under which the design is D-optimal in the class of designs ${M_{n\times 3}(\pm 1)}$ , if ${\rho\in[0,1/(n-2))}$ . We present also the matrix of the D-optimal factorial design with 3 two-level factors.  相似文献   

13.
Rainer Göb 《Metrika》1996,44(1):223-238
Let ξ1, ξ2, ξ3, ... be independent identically distributed random variables each with normal distribution with mean μ and variance σ2. Tests for the process mean μ are well-known elements of statistical analysis: the Gauß test under known process variance σ2, Student’st-test under unknown process variance σ2. Let the process be partitioned in lots (ξ1, ..., ξ N ), (ξ N+1, ..., ξ2N ), ... of sizeN. Consider (ξ1, ..., ξ N ) as a stochastic representative of this lot sequence and let the lot be characterized by the lot mean $\frac{1}{N}\sum\limits_{i = 1}^N {\xi _i } $ . The lot mean can be considered as a parameter of the joint conditional distribution function of the lot variables under $\frac{1}{N}\sum\limits_{i = 1}^N {\xi _i } = z$ . The present paper investigates the analogies of the Gauß test and Student’st-test for the lot situation, i.e. tests of significance for the lot meanz under known and unknown process variance σ2. This approach is of special interest for the statistical control of product quality in situations where the quality of a lot of items 1, 2, ...,N with quality characteristics ξ1, ξ2, ..., ξ N is identified with the lot average $\frac{1}{N}\sum\limits_{i = 1}^N {\xi _i } = z$ .  相似文献   

14.
Let $\{W_m\}{_{m\ge 1}}$ be the sequence of weak records from a discrete parent random variable, $X$ , supported on the non-negative integers. We obtain a new characterization of geometric distributions based on an additive property of weak records: $X$ follows a geometric distribution if and only if for certain integers, $n,\, s\ge 1, W_{n+s}\stackrel{d}{=}W_n+W^{\prime }_s$ , with $W^{\prime }_s$ independent of $W_n$ and $W^{\prime }_s\stackrel{d}{=} W_s$ .  相似文献   

15.
Let $\mathcal{M }_{\underline{i}}$ be an exponential family of densities on $[0,1]$ pertaining to a vector of orthonormal functions $b_{\underline{i}}=(b_{i_1}(x),\ldots ,b_{i_p}(x))^\mathbf{T}$ and consider a problem of estimating a density $f$ belonging to such family for unknown set ${\underline{i}}\subset \{1,2,\ldots ,m\}$ , based on a random sample $X_1,\ldots ,X_n$ . Pokarowski and Mielniczuk (2011) introduced model selection criteria in a general setting based on p-values of likelihood ratio statistic for $H_0: f\in \mathcal{M }_0$ versus $H_1: f\in \mathcal{M }_{\underline{i}}\setminus \mathcal{M }_0$ , where $\mathcal{M }_0$ is the minimal model. In the paper we study consistency of these model selection criteria when the number of the models is allowed to increase with a sample size and $f$ ultimately belongs to one of them. The results are then generalized to the case when the logarithm of $f$ has infinite expansion with respect to $(b_i(\cdot ))_1^\infty $ . Moreover, it is shown how the results can be applied to study convergence rates of ensuing post-model-selection estimators of the density with respect to Kullback–Leibler distance. We also present results of simulation study comparing small sample performance of the discussed selection criteria and the post-model-selection estimators with analogous entities based on Schwarz’s rule as well as their greedy counterparts.  相似文献   

16.
Let \((X_1,X_2,\ldots ,X_n)\) be a Gaussian random vector with a common correlation coefficient \(\rho _n,\,0\le \rho _n<1\) , and let \(M_n= \max (X_1,\ldots , X_n),\,n\ge 1\) . For any given \(a>0\) , define \(T_n(a)= \left\{ j,\,1\le j\le n,\,X_j\in (M_n-a,\,M_n]\right\} ,\,K_n(a)= \#T_n(a)\) and \(S_n(a)=\sum \nolimits _{j\in T_n(a)}X_j,\,n\ge 1\) . In this paper, we obtain the limit distributions of \((K_n(a))\) and \((S_n(a))\) , under the assumption that \(\rho _n\rightarrow \rho \) as \(n\rightarrow \infty ,\) for some \(\rho \in [0,1)\) .  相似文献   

17.
A stochastic marked point process model based on doubly stochastic Poisson process is considered in the problem of prediction for the total size of future marks in a given period, given the history of the process. The underlying marked point process \((T_{i},Y_{i})_{i\ge 1}\) , where \(T_{i}\) is the time of occurrence of the \(i\) th event and the mark \(Y_{i}\) is its characteristic (size), is supposed to be a non-homogeneous Poisson process on \(\mathbb {R}_{+}^{2}\) with intensity measure \(P\times \varTheta \) , where \(P\) is known, whereas \(\varTheta \) is treated as an unknown measure of the total size of future marks in a given period. In the problem of prediction considered, a Bayesian approach is used assuming that \(\varTheta \) is random with prior distribution presented by a gamma process. The best predictor with respect to this prior distribution is constructed under a precautionary loss function. A simulation study for comparing the behavior of the predictors under various criteria is provided.  相似文献   

18.
We consider the (possibly nonlinear) regression model in \(\mathbb{R }^q\) with shift parameter \(\alpha \) in \(\mathbb{R }^q\) and other parameters \(\beta \) in \(\mathbb{R }^p\) . Residuals are assumed to be from an unknown distribution function (d.f.). Let \(\widehat{\phi }\) be a smooth \(M\) -estimator of \(\phi = {{\beta }\atopwithdelims (){\alpha }}\) and \(T(\phi )\) a smooth function. We obtain the asymptotic normality, covariance, bias and skewness of \(T(\widehat{\phi })\) and an estimator of \(T(\phi )\) with bias \(\sim n^{-2}\) requiring \(\sim n\) calculations. (In contrast, the jackknife and bootstrap estimators require \(\sim n^2\) calculations.) For a linear regression with random covariates of low skewness, if \(T(\phi ) = \nu \beta \) , then \(T(\widehat{\phi })\) has bias \(\sim n^{-2}\) (not \(n^{-1}\) ) and skewness \(\sim n^{-3}\) (not \(n^{-2}\) ), and the usual approximate one-sided confidence interval (CI) for \(T(\phi )\) has error \(\sim n^{-1}\) (not \(n^{-1/2}\) ). These results extend to random covariates.  相似文献   

19.
The main result of the paper is the following characterization of the generalized arcsine density p γ (t) = t γ?1(1 ? t) γ?1/B(γ, γ)   with ${t \in (0, 1)}$ and ${\gamma \in(0,\frac12) \cup (\frac12,1)}$ : a r.v. ξ supported on [0, 1] has the generalized arcsine density p γ (t) if and only if ${ {\mathbb E} |\xi- x|^{1-2 \gamma}}$ has the same value for almost all ${x \in (0,1)}$ . Moreover, the measure with density p γ (t) is a unique minimizer (in the space of all probability measures μ supported on (0, 1)) of the double expectation ${ (\gamma-\frac12 ) {\mathbb E} |\xi-\xi^{\prime}|^{1-2 \gamma}}$ , where ξ and ξ′ are independent random variables distributed according to the measure μ. These results extend recent results characterizing the standard arcsine density (the case ${\gamma=\frac12}$ ).  相似文献   

20.
In this note we discuss the following problem. LetX andY to be two real valued independent r.v.'s with d.f.'sF and ?. Consider the d.f.F*? of the r.v.X oY, being o a binary operation among real numbers. We deal with the following equation: $$\mathcal{G}^1 (F * \phi ,s) = \mathcal{G}^2 (F,s)\square \mathcal{G}^3 (\phi ,s)\forall s \in S$$ where \(\mathcal{G}^1 ,\mathcal{G}^2 ,\mathcal{G}^3 \) are real or complex functionals, т another binary operation ands a parameter. We give a solution, that under stronger assumptions (Aczél 1966), is the only one, of the problem. Such a solution is obtained in two steps. First of all we give a solution in the very special case in whichX andY are degenerate r.v.'s. Secondly we extend the result to the general case under the following additional assumption: $$\begin{gathered} \mathcal{G}^1 (\alpha F + (1 - \alpha )\phi ,s) = H[\mathcal{G}^i (F,s),\mathcal{G}^i (\phi ,s);\alpha ] \hfill \\ \forall \alpha \in [0,1]i = 1,2,3 \hfill \\ \end{gathered} $$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号