首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Consider a sequence of independent random variables (r.v.) X 1 X 2, …, Xn , … , with the same distribution function (d.f.) F(x). Let E (Xn ) = 0, E , E (?(X)) denoting the mean value of the r.v. ? (X). Further, let the r.v. where have the d.f. F n (x). It was proved by Berry [1] and the present author (Esseen [2], [4]) that Φ(x) being the normal d.f.   相似文献   

2.
Abstract

Let Xbv (v = 1,2, ..., n) be independent random variables with the distribution functions Fbvx) and suppose . We define a random variable by where and denote the distribution function of X by F (x.  相似文献   

3.
Abstract

Sei ?(x) eine für ? ∞ < x < + ∞ definierte reelle nichtnegative Funktion und   相似文献   

4.
Abstract

Im Zinsfussproblem spielen eine wichtige Rolle drei Hilfsfunktionen der Summen der diskontierten Zahlen, die wir vorweg kurz erwahnen wollen. Unter der nten Summe der diskontierten Zahlen Dx verstehen wir SpezieU haben wir:   相似文献   

5.
Abstract

Rao [1] and simultaneously Cramér [2, 3] have shown that if f (x, θ) is the probability density function of a distribution involving an unknown parameter θ and distributed over the range α ? x ? b, where a and b are independent of θ, and if x 1 x 2 ... x n is a random sample of n independent observations from this distribution, the variance of any estimate unbiased for Ψ (θ), satisfies the inequality where E denotes mathematical expectation and is Fisher's information index about θ. In (1), equality holds if, and only if, θ* is sufficient for θ. This inequality is further generalized to the multi-parametric case.  相似文献   

6.
Let us consider a general discontinuous frequency distribution where the xpi -S are the values of the variable x, and f(xpi) is the probability that x will take the value xpi . We will assume that that is to say: x must take one of the values xpi(i = 0, 1, 2, 3, ... n).  相似文献   

7.
Abstract

Although most applications of stratified sampling represent sampling from a finite population, π(N), consisting of k mutually exclusive sub-populations or strata, n, (N,), it is for purposes of theoretical investigations convenient to deal with a hypothetical population n, represented by a distribution function f(y), a < y < b. This hypothetical population likewise consists of k mutually exclusive strata, πi , i = 1,.2 ... k. The mean of this population is µi being the mean of ni. By means of a random sample of n observations, ni of which are selected from πi , µ, is estimated by: being the estimate of µi .  相似文献   

8.
Abstract

Dans son traité de la théorie des erreurs 1 Theorie der Beobachtungsfehler, Leipzig 1891. M. E. Czuber s'occupe page 202–204 du calcul de la valeur probable de la plus petite erreur dans une série d'observations. En admettant la loi de Gauss il en trouve l'expression , où n est le nombre des observations et . Afin d'évaluer l'intégrale qui représente σ, M. Czuber la remplace par , eu remarquant que la valeur de est très petite, dès que k est en quelque façon considérable. Pour les petites valeurs de x la fonction θ(x) ne diffère que légèrement de hx, dit-il ensuite, de sorte que nous aurons comme valeur approchée de σ . En supposant le nombre n très grand, il est clair, dit M. Czuber, qu'on peut choisir k de manière que (1-hk)n+1 soit négligeable; il parvient ainsi à la valeur definitive .  相似文献   

9.
Abstract

Let t (x, n) being defined by Max and .  相似文献   

10.
Abstract

In einer Note über die Theorie des Deekungskapitales habe ieh für das reduzierte Kapital der gemisehten Versicherung auf die Beträge At den Ausdruck gebraueht (1) wobei als Deckungsintensität bezeichnet wurde.  相似文献   

11.
Abstract

1. Introduction

(a) Maximum Likelihood.—In a previous paper (THIS JOURNAL, vol. XXXII, 1949, pp. 135–159) the author gave tables of the functions and where ?(x) denotes the normal law of distribution, φ(x) its integral and ?′(x) its first derivative. With the aid of these tables it is practicable to solve the maximum likelihood equations for coarsely grouped normal observations. The procedure was illustrated by examples.  相似文献   

12.
Im Gegensatz zur durchschnittlichen Lebensdauer hat die wahrscheinliche Lebensdauer in der Versicherungstechnik wohl kaum je eine wirkliche Anwendung gefunden. Der Grund hierfür dürfte hauptsächlich in der recht schwierigen mathematischen Definition dieser Masszahl zu such en sein. Während die durchschnittliche Lebensdauer bekantlich explicite definiert ist, so ist die wahrscheinliche Lebensdauer — wir werden sie mit ttx bezeichnen — implicite durch die Gleichung definiert.  相似文献   

13.
Abstract

Herr K. A. POUKKA hat in einer unter dem gleichem Titel erschienenen Arbeit1 fü die zum Zinsfuss i+h zu berechnende Leibrente eine Näherungsformel. abgeleitet, welche sehr zufriedenstellende Resultate gibt. Die Formel wird aus der Reihenentwicklung gewonnen, für welche Herr POUKKA eine Ableitung mitteilt.  相似文献   

14.
Abstract

The problem of “optimum stratification” was discussed by the firstmentioned author in an earlier paper (1). The discussion in that paper was limited to sampling from an infinite population, represented by a density function f{y). The optimum points yi of stratification, for estimating the mean µ using were determined by solving the equations: which gives the stratification points Yi that minimize the sampling variance V y (provided the usual condition for the minimum is fulfilled)  相似文献   

15.
Abstract

Assume that a large number of observations are made on a normal random variable with the density function where σ σ 0, When the sample is very large the ordinary estimates of µ and a involve considerable computational work. In order to simplify the estimation of µ and/or σ it is sometimes convenient to select a small number of sample quantiles and to use estimates which are linear functions of these sample quantiles, Such a procedure is particularly convenient when the observations occur naturally in order of magnitude, which happens in life testing, for instance, Let   相似文献   

16.
Analysis of statistical distributions.

1. Let m and σ denote the mean and the standard deviation of a statistical variable X, and let W(x) be the probability function of that variable as defined in the first paper 1 This journal, 1928, p. 13. We shall refer to that paper by the letter I. — The sense in which the words probability function and frequency function are used here must be carefully observed, If the probability that a certain variable lies between x and x+dx is f(x) dx, then f(x) is the frequency function of the variable. The probability function is, in cases where a finite frequency function ex-ists, equal to the integral of the latter, taken over the interval from -∞ to x — The notations of the present paper will, as a rule, correspond to those of I, the most important exception being the symbol n , which will here always denote the number of observations in a statistical series and not, as in I, the number of elementary components. , Art. 1. If we put (cf. I, formula (3)) F(x) is the probability function of the variable , with the mean value 0 and the standard deviation 1. Denoting by µ2, µ3, ... the moments of W(x) , taken about the mean (cf. I, Art. 7, where m is supposed to be zero), we put, following Charlier,   相似文献   

17.
Summary

In a paper in Biometrika, Anscombe (1950) considered the question of solving the equation with respect to x. Here “Log” denotes the natural logarithm, while N s , where N k >0 and N s =0 for s>k, denotes the number of items ?s in a sample of independent observations from a population with the negative binomial distribution and m denotes the sampling mean: it can in the case k ? 2 be shown that the equation (*) has at least one root. In vain search for “Gegenbeispiele”, Anscombe was led to the conjecture (l.c., 367) that (*) has no solution, if m 2 > 2S, and a unique solution, if k ? 2 and m 2 < 2S. In the latter case, x equals the maximum-likelihood estimate of the parameter ?.

In the present paper it will, after some preliminaries, be shown that the equation (*) has no solution, if k=l, or if k?2 and m 2 ? 2S, whereas (*) has a unique solution, if k ? 2 and m 2 < 2S.  相似文献   

18.
Abstract

I

In an earlier paper [5] we discussed the problem of finding an unbiased estimator of where p (x, 0) is a given frequency density and 0 is a (set of) parameter(s). In general, will not be an unbiased estimator of (1), when Ô is an unbiased estimate of O. In [5] it was shown that is an unbiased estimator of (1), if we define yi , as the larger of 0 and X j - c. It was emphasized that the resulting estimate may very well be zero, even when it is unreasonable to assume that the premium for a stop.loss reinsurance. defined by a frequency p (x, 0) of claims x and a critical limit c, should be zero when the critical limit has not been exceeded during the n years considered for the determination of the premium.  相似文献   

19.
Abstract

Let be Pearson's statistics for testing goodness of fit in various marginal distributions associated with a categorized array of N objects. This study is concerned with disturbances in the limiting joint distribution of when maximum likelihood estimates from the original ungrouped data are used instead of the usual estimates from the cell frequencies after grouping. Under regularity conditions the limiting distributions of , and are shown to satisfy for each positive {cb1 x ... x cbT }, where A(c) is the Cartesian product set A(c) = (0, cb1 ] x ... x (0, cbT ]. The limiting distributions are characterized in terms of partitioned Wishart matrices having unit rank and parameters as appropriate. These results are extensions of work by Chernoff and Lehmann (1954) and Jensen (1974).  相似文献   

20.
Abstract

1. Summary of results. Let E and Eo be chance variables at least one of which is not normally distributed (throughout the present paper a chance variable which is constant with probability one will be considered to be normally distributed with variance zero), and whose distribution is otherwise unknown, except that it is known that with probability one, where 0 and p are unknown constants, . Let (u; v) be jointly normally distributed chance variables with unknown covariance matrix, distributed independently of (ε, ε0). Without loss of generality we assume that the expected values E u and E v, of u and v respectively, are both zero. Define   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号