首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

In this paper, we derive two-sided bounds for the ruin probability in the compound Poisson risk model when the adjustment coefficient of the individual claim size distribution does not exist. These bounds also apply directly to the tails of compound geometric distributions. The upper bound is tighter than that of Dickson (1994). The corresponding lower bound, which holds under the same conditions, is tighter than that of De Vylder and Goovaerts (1984). Even when the adjustment coefficient exists, the upper bound is, in some cases, tighter than Lundberg's bound. These bounds are applicable for any positive distribution function with a finite mean. Examples are given and numerical comparisons with asymptotic formulae for the ruin probability are also considered.  相似文献   

2.
Abstract

An explicit solution for the probability of ruin in the presence of an absorbing upper barrier was developed by Segerdahl (1970) for the particular case in which both the interoccurrence times between successive claims and the single claim amounts follow an exponential distribution with unit mean. In this paper we show that his method of solution may be extended to produce explicit solutions for two more general types of single claim amount distribution. These are the gamma distribution, denoted γ(a), where a is an integer, and the mixed exponential distribution. Comparisons are drawn between this approach when the upper barrier tends to infinity, and the classical solution for ruin probability in these particular cases given in Cramér (1955).  相似文献   

3.

In this paper we consider a risk process in which claim inter-arrival times have a phase-type(2) distribution, a distribution with a density satisfying a second order linear differential equation. We consider some ruin related problems. In particular, we consider the compound geometric representation of the infinite time survival probability, as well as the (defective) distributions of the surplus immediately prior to ruin and of the deficit at ruin. We also consider explicit solutions for the infinite time ruin probability in the case where the individual claim amount distribution is phase-type.  相似文献   

4.
Abstract

The probability of ruin is investigated under the influence of a premium rate which varies with the level of free reserves. Section 4 develops a number of inequalities for the ruin probability, establishing upper and lower bounds for it in Theorem 4. Theorem 5 gives an expression for the ruin probability, and it is seen in Section 5 that this amounts to a generalization of the ruin probability given by Gerber for the special case of a negative exponential claim size distribution. In that same section it is shown the Lundberg's inequality is not derivable from the generalized theory of Section 4, and this is seen as a drawback of the methods used there. Sections 6 and 7 deal with some special cases, including claim size distributions with monotone failure rates. Section 8 shows that, in contrast with the result for a constant premium that the probability of ruin for zero initial reserve is independent of the claim size distribution, the same result does not hold when the premium rate is allowed to vary. Section 9 gives some comments on the possible effect of “dangerousness” of a claim size distribution on ruin probability.  相似文献   

5.
Abstract

This paper studies the joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin. The time of ruin is analyzed in terms of its Laplace transforms, which can naturally be interpreted as discounting. Hence the classical risk theory model is generalized by discounting with respect to the time of ruin. We show how to calculate an expected discounted penalty, which is due at ruin and may depend on the deficit at ruin and on the surplus immediately before ruin. The expected discounted penalty, considered as a function of the initial surplus, satisfies a certain renewal equation, which has a probabilistic interpretation. Explicit answers are obtained for zero initial surplus, very large initial surplus, and arbitrary initial surplus if the claim amount distribution is exponential or a mixture of exponentials. We generalize Dickson’s formula, which expresses the joint distribution of the surplus immediately prior to and at ruin in terms of the probability of ultimate ruin. Explicit results are obtained when dividends are paid out to the stockholders according to a constant barrier strategy.  相似文献   

6.
Abstract

In this paper we study the Gerber-Shiu discounted penalty function for the ordinary renewal risk model modified by the constant interest on the surplus. Explicit answers are expressed by an infinite series, and a relational formula for some important joint density functions is derived. Applications of the results to the compound Poisson model are given. Finally, a lower bound and an upper bound for the ultimate ruin probability are derived.  相似文献   

7.
In this paper, we first study orders, valid up to a certain positive initial surplus, between a pair of ruin probabilities resulting from two individual claim size random variables for corresponding continuous time surplus processes perturbed by diffusion. The results are then applied to obtain a smooth upper (lower) bound for the underlying ruin probability; the upper (lower) bound is constructed from exponentially distributed claims, provided that the mean residual lifetime function of the underlying random variable is non-decreasing (non-increasing). Finally, numerical examples are given to illustrate the constructed upper bounds for ruin probabilities with comparisons to some existing ones.  相似文献   

8.
Abstract

If one assumes that the surplus of an insurer follows a jump-diffusion process and the insurer would invest its surplus in a risky asset, whose prices are modeled by a geometric Brownian motion, the resulting surplus for the insurer is called a jump-diffusion surplus process compounded by a geometric Brownian motion. In this resulting surplus process, ruin may be caused by a claim or oscillation. We decompose the ruin probability in the resulting surplus process into the sum of two ruin probabilities: the probability that ruin is caused by a claim, and the probability that ruin is caused by oscillation. Integro-differential equations for these ruin probabilities are derived. When claim sizes are exponentially distributed, asymptotical formulas of the ruin probabilities are derived from the integro-differential equations, and it is shown that all three ruin probabilities are asymptotical power functions with the same orders and that the orders of the power functions are determined by the drift and volatility parameters of the geometric Brownian motion. It is known that the ruin probability for a jump-diffusion surplus process is an asymptotical exponential function when claim sizes are exponentially distributed. The results of this paper further confirm that risky investments for an insurer are dangerous in the sense that either ruin is certain or the ruin probabilities are asymptotical power functions, not asymptotical exponential functions, when claim sizes are exponentially distributed.  相似文献   

9.
构建一个更能刻画保险公司现实运营状况的破产模型,对于保险公司来说具有重要意义。假设索赔额、盈余额和更新过程均是在随机模糊环境下,使得该模型不仅能反映事件的随机性,也能反映决策者的主观性;同时,假设保险公司赔偿时刻滞后与核赔事件发生时刻,建立了交替更新过程。基于以上两点假设,当索赔额和时间间隔均是服从指数分布时,建立了交替更新过程下的随机模糊破产模型,并给出了最终破产概率公式与最终破产机会均值公式。  相似文献   

10.
11.
Abstract

We consider a compound Poisson risk model in which part of the premium is paid to the shareholders as dividends when the surplus exceeds a specified threshold level. In this model we are interested in computing the moments of the total discounted dividends paid until ruin occurs. However, instead of employing the traditional argument, which involves conditioning on the time and amount of the first claim, we provide an alternative probabilistic approach that makes use of the (defective) joint probability density function of the time of ruin and the deficit at ruin in a classical model without a threshold. We arrive at a general formula that allows us to evaluate the moments of the total discounted dividends recursively in terms of the lower-order moments. Assuming the claim size distribution is exponential or, more generally, a finite shape and scale mixture of Erlangs, we are able to solve for all necessary components in the general recursive formula. In addition to determining the optimal threshold level to maximize the expected value of discounted dividends, we also consider finding the optimal threshold level that minimizes the coefficient of variation of discounted dividends. We present several numerical examples that illustrate the effects of the choice of optimality criterion on quantities such as the ruin probability.  相似文献   

12.
Abstract

A Markov-modulated risk process perturbed by diffusion is considered in this paper. In the model the frequencies and distributions of the claims and the variances of the Wiener process are influenced by an external Markovian environment process with a finite number of states. This model is motivated by the flexibility in modeling the claim arrival process, allowing that periods with very frequent arrivals and ones with very few arrivals may alternate. Given the initial surplus and the initial environment state, systems of integro-differential equations for the expected discounted penalty functions at ruin caused by a claim and oscillation are established, respectively; a generalized Lundberg’s equation is also obtained. In the two-state model, the expected discounted penalty functions at ruin due to a claim and oscillation are derived when both claim amount distributions are from the rational family. As an illustration, the explicit results are obtained for the ruin probability when claim sizes are exponentially distributed. A numerical example also is given for the case that two classes of claims are Erlang(2) distributed and of a mixture of two exponentials.  相似文献   

13.
Abstract

In a paper by de Vylder (1977) an upper bound for the probability of ruin is constructed. A numerical example is given for a Poisson-process with claim d.f.=l-e?y , the operational time T=100, the premium loading λ=0.05 (c= 1.05) and the initial reserve u=50. In this case the limit is found to be ψ(u, T)?00.0025.  相似文献   

14.
Abstract

At retirement, most individuals face a choice between voluntary annuitization and discretionary management of assets with systematic withdrawals for consumption purposes. Annuitization–buying a life annuity from an insurance company–assures a lifelong consumption stream that cannot be outlived, but it is at the expense of a complete loss of liquidity. On the other hand, discretionary management and consumption from assets–self-annuitization–preserves flexibility but with the distinct risk that a constant standard of living will not be maintainable.

In this paper we compute the lifetime and eventual probability of ruin (PoR) for an individual who wishes to consume a fixed periodic amount–a self-constructed annuity–from an initial endowment invested in a portfolio earning a stochastic (lognormal) rate of return. The lifetime PoR is the probability that net wealth will hit zero prior to a stochastic date of death. The eventual PoR is the probability that net wealth will ever hit zero for an infinitely lived individual.

We demonstrate that the probability of ruin can be represented as the probability that the stochastic present value (SPV) of consumption is greater than the initial investable wealth. The lifetime and eventual probabilities of ruin are then obtained by evaluating one minus the cumulative density function of the SPV at the initial wealth level. In that eventual case, we offer a precise analytical solution because the SPV is known to be a reciprocal gamma distribution. For the lifetime case, using the Gompertz law of mortality, we provide two approximations. Both involve “moment matching” techniques that are motivated by results in Arithmetic Asian option pricing theory. We verify the accuracy of these approximations using Monte Carlo simulations. Finally, a numerical case study is provided using Canadian mortality and capital market parameters. It appears that the lifetime probability of ruin–for a consumption rate that is equal to the life annuity payout–is at its lowest with a well-diversified portfolio.  相似文献   

15.
In the framework of classical risk theory we investigate a model that allows for dividend payments according to a time-dependent linear barrier strategy. Partial integro-differential equations for Gerber and Shiu's discounted penalty function and for the moment generating function of the discounted sum of dividend payments are derived, which generalizes several recent results. Explicit expressions for the nth moment of the discounted sum of dividend payments and for the joint Laplace transform of the time to ruin and the surplus prior to ruin are derived for exponentially distributed claim amounts.  相似文献   

16.
Abstract

This paper considers a Sparre Andersen collective risk model in which the distribution of the interclaim time is that of a sum of n independent exponential random variables; thus, the Erlang(n) model is a special case. The analysis is focused on the function φ(u), the expected discounted penalty at ruin, with u being the initial surplus. The penalty may depend on the deficit at ruin and possibly also on the surplus immediately before ruin. It is shown that the function φ(u) satisfies a certain integro-differential equation and that this equation can be solved in terms of Laplace transforms, extending a result found in Lin (2003). As a consequence, a closed-form expression is obtained for the discounted joint probability density of the deficit at ruin and the surplus just before ruin, if the initial surplus is zero. For this formula and other results, the roots of Lundberg’s fundamental equation in the right half of the complex plane play a central role. Also, it is shown that φ(u) satisfies Li’s (2003) renewal equation. Under the assumption that the penalty depends only on the deficit at ruin and that the individual claim amount density is a combination of exponential densities, a closed-form expression for φ(u) is derived. In this context, known results of the Cauchy matrix are useful. Surprisingly, certain results are best expressed in terms of divided differences, a topic deleted from the actuarial examinations at the end of last century.  相似文献   

17.
Abstract

Consider a discrete-time risk model in which the insurer is allowed to invest a proportion of its wealth in a risky stock and keep the rest in a risk-free bond. Assume that the claim amounts within individual periods follow an autoregressive process with heavy-tailed innovations and that the log-returns of the stock follow another auto regressive process, independent of the former one. We derive an asymptotic formula for the finite-time ruin probability and propose a hybrid method, combining simulation with asymptotics, to compute this ruin probability more efficiently. As an application, we consider a portfolio optimization problem in which we determine the proportion invested in the risky stock that maximizes the expected terminal wealth subject to a constraint on the ruin probability.  相似文献   

18.
We investigate, focusing on the ruin probability, an adaptation of the Cramér–Lundberg model for the surplus process of an insurance company, in which, conditionally on their intensities, the two mixed Poisson processes governing the arrival times of the premiums and of the claims respectively, are independent. Such a model exhibits a stochastic dependence between the aggregate premium and claim amount processes. An explicit expression for the ruin probability is obtained when the claim and premium sizes are exponentially distributed.  相似文献   

19.
Abstract

In this paper we derive some results on the dividend payments prior to ruin in a Markovmodulated risk process in which the rate for the Poisson claim arrival process and the distribution of the claim sizes vary in time depending on the state of an underlying (external) Markov jump process {J(t); t ≥ 0}. The main feature of the model is the flexibility in modeling the arrival process in the sense that periods with very frequent arrivals and periods with very few arrivals may alternate, and that the states of {J(t); t ≥ 0} could describe, for example, epidemic types in health insurance or weather conditions in car insurance. A system of integro-differential equations with boundary conditions satisfied by the nth moment of the present value of the total dividends prior to ruin, given the initial environment state, is derived and solved. We show that the probabilities that the surplus process attains a dividend barrier from the initial surplus without first falling below zero and the Laplace transforms of the time that the surplus process first hits a barrier without ruin occurring can be expressed in terms of the solution of the above-mentioned system of integro-differential equations. In the two-state model, explicit results are obtained when both claim amounts are exponentially distributed.  相似文献   

20.
Abstract

In this paper an extension of the semi-Markovian risk model studied by Albrecher and Boxma (2005) is considered by allowing for general interclaim times. In such a model, we follow the ideas of Cheung et al. (2010b) and consider a generalization of the Gerber-Shiu function by incorporating two more random variables in the traditional penalty function, namely, the minimum surplus level before ruin and the surplus level immediately after the second last claim prior to ruin. It is shown that the generalized Gerber-Shiu function satisfies a matrix defective renewal equation. Detailed examples are also considered when either the interclaim times or the claim sizes are exponentially distributed. Finally, we also consider the case where the claim arrival process follows a Markovian arrival process. Probabilistic arguments are used to derive the discounted joint distribution of four random variables of interest in this risk model by capitalizing on an existing connection with a particular fluid flow process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号