首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bollerslev's ( 1990 , Review of Economics and Statistics, 52, 5–59) constant conditional correlation and Engle's (2002, Journal of Business & Economic Statistics, 20, 339–350) dynamic conditional correlation (DCC) bivariate generalized autoregressive conditional heteroskedasticity (BGARCH) models are usually used to estimate time‐varying hedge ratios. In this study, we extend the above model to more flexible ones to analyze the behavior of the optimal conditional hedge ratio based on two (BGARCH) models: (i) adopting more flexible bivariate density functions such as a bivariate skewed‐t density function; (ii) considering asymmetric individual conditional variance equations; and (iii) incorporating asymmetry in the conditional correlation equation for the DCC‐based model. Hedging performance in terms of variance reduction and also value at risk and expected shortfall of the hedged portfolio are also conducted. Using daily data of the spot and futures returns of corn and soybeans we find asymmetric and flexible density specifications help increase the goodness‐of‐fit of the estimated models, but do not guarantee higher hedging performance. We also find that there is an inverse relationship between the variance of hedge ratios and hedging effectiveness. © 2009 Wiley Periodicals, Inc. Jrl Fut Mark 30:71–99, 2010  相似文献   

2.
The non‐normality of financial asset returns has important implications for hedging. In particular, in contrast with the unambiguous effect that minimum‐variance hedging has on the standard deviation, it can actually increase the negative skewness and kurtosis of hedge portfolio returns. Thus, the reduction in Value at Risk (VaR) and Conditional Value at Risk (CVaR) that minimum‐variance hedging generates can be significantly lower than the reduction in standard deviation. In this study, we provide a new, semi‐parametric method of estimating minimum‐VaR and minimum‐CVaR hedge ratios based on the Cornish‐Fisher expansion of the quantile of the hedged portfolio return distribution. Using spot and futures returns for the FTSE 100, FTSE 250, and FTSE Small Cap equity indices, the Euro/US Dollar exchange rate, and Brent crude oil, we find that the semiparametric approach is superior to the standard minimum‐variance approach, and to the nonparametric approach of Harris and Shen (2006). In particular, it provides a greater reduction in both negative skewness and excess kurtosis, and consequently generates hedge portfolios that in most cases have lower VaR and CVaR. © 2009 Wiley Periodicals, Inc. Jrl Fut Mark 30:780–794, 2010  相似文献   

3.
This article analyzes the effects of the length of hedging horizon on the optimal hedge ratio and hedging effectiveness using 9 different hedging horizons and 25 different commodities. We discuss the concept of short‐ and long‐run hedge ratios and propose a technique to simultaneously estimate them. The empirical results indicate that the short‐run hedge ratios are significantly less than 1 and increase with the length of hedging horizon. We also find that hedging effectiveness increases with the length of hedging horizon. However, the long‐run hedge ratio is found to be close to the naïve hedge ratio of unity. This implies that, if the hedging horizon is long, then the naïve hedge ratio is close to the optimum hedge ratio. © 2004 Wiley Periodicals, Inc. Jrl Fut Mark 24:359–386, 2004  相似文献   

4.
In a number of earlier studies it has been demonstrated that the traditional regression‐based static approach is inappropriate for hedging with futures, with the result that a variety of alternative dynamic hedging strategies have emerged. In this study the authors propose a class of new copula‐based GARCH models for the estimation of the optimal hedge ratio and compare their effectiveness with that of other hedging models, including the conventional static, the constant conditional correlation (CCC) GARCH, and the dynamic conditional correlation (DCC) GARCH models. With regard to the reduction of variance in the returns of hedged portfolios, the empirical results show that in both the in‐sample and out‐of‐sample tests, with full flexibility in the distribution specifications, the copula‐based GARCH models perform more effectively than other dynamic hedging models. © 2008 Wiley Periodicals, Inc. Jrl Fut Mark 28:1095–1116, 2008  相似文献   

5.
This article examines the ability of several models to generate optimal hedge ratios. Statistical models employed include univariate and multivariate generalized autoregressive conditionally heteroscedastic (GARCH) models, and exponentially weighted and simple moving averages. The variances of the hedged portfolios derived using these hedge ratios are compared with those based on market expectations implied by the prices of traded options. One‐month and three‐month hedging horizons are considered for four currency pairs. Overall, it has been found that an exponentially weighted moving‐average model leads to lower portfolio variances than any of the GARCH‐based, implied or time‐invariant approaches. © 2001 John Wiley & Sons, Inc. Jrl Fut Mark 21:1043–1069, 2001  相似文献   

6.
It is widely believed that the conventional futures hedge ratio, is variance‐minimizing when it is computed using percentage returns or log returns. It is shown that the conventional hedge ratio is variance‐minimizing when computed from returns measured in dollar terms but not from returns measured in percentage or log terms. Formulas for the minimum‐variance hedge ratio under percentage and log returns are derived. The difference between the conventional hedge ratio computed from percentage and log returns and the minimum‐variance hedge ratio is found to be relatively small when directly hedging, especially when using near‐maturity futures. However, the minimum‐variance hedge ratio can vary significantly from the conventional hedge ratio computed from percentage or log returns when used in cross‐hedging situations. Simulation analysis shows that the incorrect application of the conventional hedge ratio in crosshedging situations can substantially reduce hedging performance. © 2005 Wiley Periodicals, Inc. Jrl Fut Mark 25:537–552, 2005  相似文献   

7.
In this paper we describe a new approach for determining time‐varying minimum variance hedge ratio in stock index futures markets by using Markov Regime Switching (MRS) models. The rationale behind the use of these models stems from the fact that the dynamic relationship between spot and futures returns may be characterized by regime shifts, which, in turn, suggests that by allowing the hedge ratio to be dependent upon the “state of the market,” one may obtain more efficient hedge ratios and hence, superior hedging performance compared to other methods in the literature. The performance of the MRS hedge ratios is compared to that of alternative models such as GARCH, Error Correction and OLS in the FTSE 100 and S&P 500 markets. In and out‐of‐sample tests indicate that MRS hedge ratios outperform the other models in reducing portfolio risk in the FTSE 100 market. In the S&P 500 market the MRS model outperforms the other hedging strategies only within sample. Overall, the results indicate that by using MRS models market agents may be able to increase the performance of their hedges, measured in terms of variance reduction and increase in their utility. © 2004 Wiley Periodicals, Inc. Jrl Fut Mark 24:649–674, 2004  相似文献   

8.
This study derives optimal hedge ratios with infrequent extreme news events modeled as common jumps in foreign currency spot and futures rates. A dynamic hedging strategy based on a bivariate GARCH model augmented with a common jump component is proposed to manage currency risk. We find significant common jump components in the British pound spot and futures rates. The out‐of‐sample hedging exercises show that optimal hedge ratios which incorporate information from common jump dynamics substantially reduce daily and weekly portfolio risk. © 2009 Wiley Periodicals, Inc. Jrl Fut Mark 30:801–807, 2010  相似文献   

9.
Portfolio value‐at‐risk (PVAR) is widely used in practice, but recent criticisms have focused on risks arising from biased PVAR estimates due to model specification errors and other problems. The PVAR estimation method proposed in this article combines generalized Pareto distribution tails with the empirical density function to model the marginal distributions for each asset in the portfolio, and a copula model is used to form a joint distribution from the fitted marginals. The copula–mixed distribution (CMX) approach converges in probability to the true marginal return distribution but is based on weaker assumptions that may be appropriate for the returns data found in practice. CMX is used to estimate the joint distribution of log returns for the Taiwan Stock Exchange (TSE) index and the associated futures contracts on SGX and TAIFEX. The PVAR estimates for various hedge portfolios are computed from the fitted CMX model, and backtesting diagnostics indicate that CMX outperforms the alternative PVAR estimators. © 2006 Wiley Periodicals, Inc. Jrl Fut Mark 26:997–1018, 2006  相似文献   

10.
This study analyzes the problem of multi‐commodity hedging from the downside risk perspective. The lower partial moments (LPM2)‐minimizing hedge ratios for the stylized hedging problem of a typical Texas panhandle feedlot operator are calculated and compared with hedge ratios implied by the conventional minimum‐variance (MV) criterion. A kernel copula is used to model the joint distributions of cash and futures prices for commodities included in the model. The results are consistent with the findings in the single‐commodity case in that the MV approach leads to over‐hedging relative to the LPM2‐based hedge. An interesting and somewhat unexpected result is that minimization of a downside risk criterion in a multi‐commodity setting may lead to a “Texas hedge” (i.e. speculation) being an optimal strategy for at least one commodity. © 2009 Wiley Periodicals, Inc. Jrl Fut Mark 30:290–304, 2010  相似文献   

11.
We propose a nonparametric kernel estimation method (KEM) that determines the optimal hedge ratio by minimizing the downside risk of a hedged portfolio, measured by conditional value‐at‐risk (CVaR). We also demonstrate that the KEM minimum‐CVaR hedge model is a convex optimization. The simulation results show that our KEM provides more accurate estimations and the empirical results suggest that, compared to other conventional methods, our KEM yields higher effectiveness in hedging the downside risk in the weather‐sensitive markets.  相似文献   

12.
The paper presents a new methodology to estimate time dependent minimum variance hedge ratios. The so‐called conditional OLS hedge ratio modifies the static OLS approach to incorporate conditioning information. The ability of the conditional OLS hedge ratio to minimize the risk of a hedged portfolio is compared to conventional static and dynamic approaches, such as the naïve hedge, the roll‐over OLS hedge, and the bivariate GARCH(1,1) model. The paper concludes that, both in‐sample and out‐of‐sample, the conditional OLS hedge ratio reduces the basis risk of an equity portfolio better than the alternatives conventionally used in risk management. © 2004 Wiley Periodicals, Inc. Jrl Fut Mark 24:945–964, 2004  相似文献   

13.
When using derivative instruments such as futures to hedge a portfolio of risky assets, the primary objective is to estimate the optimal hedge ratio (OHR). When agents have mean‐variance utility and the futures price follows a martingale, the OHR is equivalent to the minimum variance hedge ratio,which can be estimated by regressing the spot market return on the futures market return using ordinary least squares. To accommodate time‐varying volatility in asset returns, estimators based on rolling windows, GARCH, or EWMA models are commonly employed. However, all of these approaches are based on the sample variance and covariance estimators of returns, which, while consistent irrespective of the underlying distribution of the data, are not in general efficient. In particular, when the distribution of the data is leptokurtic, as is commonly found for short horizon asset returns, these estimators will attach too much weight to extreme observations. This article proposes an alternative to the standard approach to the estimation of the OHR that is robust to the leptokurtosis of returns. We use the robust OHR to construct a dynamic hedging strategy for daily returns on the FTSE100 index using index futures. We estimate the robust OHR using both the rolling window approach and the EWMA approach, and compare our results to those based on the standard rolling window and EWMA estimators. It is shown that the robust OHR yields a hedged portfolio variance that is marginally lower than that based on the standard estimator. Moreover, the variance of the robust OHR is as much as 70% lower than the variance of the standard OHR, substantially reducing the transaction costs that are associated with dynamic hedging strategies. © 2003 Wiley Periodicals, Inc. Jrl Fut Mark 23:799–816, 2003  相似文献   

14.
In this paper a simple strategy for pricing and hedging a swap on the Japanese crude oil cocktail (JCC) index is discussed. The empirical performance of different econometric models is compared in terms of their computed optimal hedge ratios, using monthly data on the JCC over the period January 2000–January 2006. An explanation to how to compute a bid/ask spread and to construct the hedging position for the JCC swap contract with variable oil volume is provided. The swap pricing scheme with backtesting and rolling regression techniques is evaluated. The empirical findings show that the price‐level regression model permits one to compute more precise optimal hedge ratios relative to its competing alternatives. © 2008 Wiley Periodicals, Inc. Jrl Fut Mark 28:464–487, 2008  相似文献   

15.
The article develops a regime‐switching Gumbel–Clayton (RSGC) copula GARCH model for optimal futures hedging. There are three major contributions of RSGC. First, the dependence of spot and futures return series in RSGC is modeled using switching copula instead of assuming bivariate normality. Second, RSGC adopts an independent switching Generalized Autoregressive Conditional Heteroscedasticity (GARCH) process to avoid the path‐dependency problem. Third, based on the assumption of independent switching, a formula is derived for calculating the minimum variance hedge ratio. Empirical investigation in agricultural commodity markets reveals that RSGC provides good out‐of‐sample hedging effectiveness, illustrating importance of modeling regime shift and asymmetric dependence for futures hedging. © 2009 Wiley Periodicals, Inc. Jrl Fut Mark 29:946–972, 2009  相似文献   

16.
Dynamic futures‐hedging ratios are estimated across seven markets using generalized models of the variance/covariance structure. The hedging performances of the resultant dynamic strategies are then compared with static and naïve strategies, both in‐ and out‐of‐sample. Bayesian‐adjusted hedge ratios also are employed as error purgers. The empirical results indicate that the generalized dynamic models are well specified and that their use in determining optimal hedge ratios can lead to improvements in hedging performance as measured by the volatilities of the returns on the optimally hedged position. © 2003 Wiley Periodicals, Inc. Jrl Fut Mark 23:241–260, 2003  相似文献   

17.
Variance swaps are natural instruments for investors taking directional bets on volatility and are often used for portfolio protection. The empirical observation on skewness research suggests that derivative professionals may also desire to hedge beyond volatility risk and there exists the need to hedge higher‐moment market risks, such as skewness and kurtosis risks. We study two derivative contracts – skewness swap and kurtosis swap – which trade the forward realized third and fourth cumulants. Using S&P 500 index options data from 1996 to 2005, we document the returns of these swap contracts, i.e., skewness risk premium and kurtosis risk premium. We find that the both skewness and kurtosis risk premiums are significantly negative.  相似文献   

18.
The optimal hedging portfolio is shown to include both futures and options under a variety of circumstances when the marginal cost of hedging is nonzero. Futures and options are treated as substitute goods, and the properties of the resulting hedging demand system are explained. The overall optimal hedge ratio is shown to increase when the marginal cost of trading options is reduced. The overall optimal hedge ratio is shown to decrease when the marginal cost of trading futures is decreased. One implication is that hedging demand can be stimulated by a reduction in the perceived cost of trading options through the education of hedgers about options and the initiation of programs such as the Dairy Options Pilot Program. The demand approach is applied to estimate optimal hedge ratios for dairy producers hedging corn inputs in five regions of Pennsylvania. © 2001 John Wiley & Sons, Inc. Jrl Fut Mark 21:693–712, 2001  相似文献   

19.
This paper studies a robust continuous‐time Markowitz portfolio selection problem where the model uncertainty affects the covariance matrix of multiple risky assets. This problem is formulated into a min–max mean‐variance problem over a set of nondominated probability measures that is solved by a McKean–Vlasov dynamic programming approach, which allows us to characterize the solution in terms of a Bellman–Isaacs equation in the Wasserstein space of probability measures. We provide explicit solutions for the optimal robust portfolio strategies and illustrate our results in the case of uncertain volatilities and ambiguous correlation between two risky assets. We then derive the robust efficient frontier in closed form, and obtain a lower bound for the Sharpe ratio of any robust efficient portfolio strategy. Finally, we compare the performance of Sharpe ratios for a robust investor and for an investor with a misspecified model.  相似文献   

20.
Tie Su 《期货市场杂志》2003,23(11):1119-1122
An option hedge ratio is the sensitivity of an option price with respect to price changes in the underlying stock. It measures the number of shares of stocks to hedge an option position. This article presents a simple derivation of the hedge ratios under the Black‐Scholes option‐pricing framework. The proof is succinct and easy to follow. © 2003 Wiley Periodicals, Inc. Jrl Fut Mark 23:1119–1122, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号