首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The M5 competition follows the previous four M competitions, whose purpose is to learn from empirical evidence how to improve forecasting performance and advance the theory and practice of forecasting. M5 focused on a retail sales forecasting application with the objective to produce the most accurate point forecasts for 42,840 time series that represent the hierarchical unit sales of the largest retail company in the world, Walmart, as well as to provide the most accurate estimates of the uncertainty of these forecasts. Hence, the competition consisted of two parallel challenges, namely the Accuracy and Uncertainty forecasting competitions. M5 extended the results of the previous M competitions by: (a) significantly expanding the number of participating methods, especially those in the category of machine learning; (b) evaluating the performance of the uncertainty distribution along with point forecast accuracy; (c) including exogenous/explanatory variables in addition to the time series data; (d) using grouped, correlated time series; and (e) focusing on series that display intermittency. This paper describes the background, organization, and implementations of the competition, and it presents the data used and their characteristics. Consequently, it serves as introductory material to the results of the two forecasting challenges to facilitate their understanding.  相似文献   

2.
The M4 competition is the continuation of three previous competitions started more than 45 years ago whose purpose was to learn how to improve forecasting accuracy, and how such learning can be applied to advance the theory and practice of forecasting. The purpose of M4 was to replicate the results of the previous ones and extend them into three directions: First significantly increase the number of series, second include Machine Learning (ML) forecasting methods, and third evaluate both point forecasts and prediction intervals. The five major findings of the M4 Competitions are: 1. Out Of the 17 most accurate methods, 12 were “combinations” of mostly statistical approaches. 2. The biggest surprise was a “hybrid” approach that utilized both statistical and ML features. This method’s average sMAPE was close to 10% more accurate than the combination benchmark used to compare the submitted methods. 3. The second most accurate method was a combination of seven statistical methods and one ML one, with the weights for the averaging being calculated by a ML algorithm that was trained to minimize the forecasting. 4. The two most accurate methods also achieved an amazing success in specifying the 95% prediction intervals correctly. 5. The six pure ML methods performed poorly, with none of them being more accurate than the combination benchmark and only one being more accurate than Naïve2. This paper presents some initial results of M4, its major findings and a logical conclusion. Finally, it outlines what the authors consider to be the way forward for the field of forecasting.  相似文献   

3.
Forecasters typically evaluate the performances of new forecasting methods by exploiting data from past forecasting competitions. Over the years, numerous studies have based their conclusions on such datasets, with mis-performing methods being unlikely to receive any further attention. However, it has been reported that these datasets might not be indicative, as they display many limitations. Since forecasting research is driven somewhat by data from forecasting competitions, it becomes vital to determine whether they are indeed representative of the reality or whether forecasters tend to over-fit their methods on a random sample of series. This paper uses the data from M4 as proportionate to the real world and compares its properties with those of past datasets commonly used in the literature as benchmarks in order to provide evidence on that question. The results show that many popular benchmarks of the past may indeed deviate from reality, and ways forward are discussed in response.  相似文献   

4.
We participated in the M4 competition for time series forecasting and here describe our methods for forecasting daily time series. We used an ensemble of five statistical forecasting methods and a method that we refer to as the correlator. Our retrospective analysis using the ground truth values published by the M4 organisers after the competition demonstrates that the correlator was responsible for most of our gains over the naïve constant forecasting method. We identify data leakage as one reason for its success, due partly to test data selected from different time intervals, and partly to quality issues with the original time series. We suggest that future forecasting competitions should provide actual dates for the time series so that some of these leakages could be avoided by participants.  相似文献   

5.
We review the results of six forecasting competitions based on the online data science platform Kaggle, which have been largely overlooked by the forecasting community. In contrast to the M competitions, the competitions reviewed in this study feature daily and weekly time series with exogenous variables, business hierarchy information, or both. Furthermore, the Kaggle data sets all exhibit higher entropy than the M3 and M4 competitions, and they are intermittent.In this review, we confirm the conclusion of the M4 competition that ensemble models using cross-learning tend to outperform local time series models and that gradient boosted decision trees and neural networks are strong forecast methods. Moreover, we present insights regarding the use of external information and validation strategies, and discuss the impacts of data characteristics on the choice of statistics or machine learning methods. Based on these insights, we construct nine ex-ante hypotheses for the outcome of the M5 competition to allow empirical validation of our findings.  相似文献   

6.
Machine learning (ML) methods are gaining popularity in the forecasting field, as they have shown strong empirical performance in the recent M4 and M5 competitions, as well as in several Kaggle competitions. However, understanding why and how these methods work well for forecasting is still at a very early stage, partly due to their complexity. In this paper, I present a framework for regression-based ML that provides researchers with a common language and abstraction to aid in their study. To demonstrate the utility of the framework, I show how it can be used to map and compare ML methods used in the M5 Uncertainty competition. I then describe how the framework can be used together with ablation testing to systematically study their performance. Lastly, I use the framework to provide an overview of the solution space in regression-based ML forecasting, identifying areas for further research.  相似文献   

7.
In evaluations of forecasting accuracy, including forecasting competitions, researchers have paid attention to the selection of time series and to the appropriateness of forecast-error measures. However, they have not formally analyzed choices in the implementation of out-of-sample tests, making it difficult to replicate and compare forecasting accuracy studies. In this paper, I (1) explain the structure of out-of-sample tests, (2) provide guidelines for implementing these tests, and (3) evaluate the adequacy of out-of-sample tests in forecasting software. The issues examined include series-splitting rules, fixed versus rolling origins, updating versus recalibration of model coefficients, fixed versus rolling windows, single versus multiple test periods, diversification through multiple time series, and design characteristics of forecasting competitions. For individual time series, the efficiency and reliability of out-of-sample tests can be improved by employing rolling-origin evaluations, recalibrating coefficients, and using multiple test periods. The results of forecasting competitions would be more generalizable if based upon precisely described groups of time series, in which the series are homogeneous within group and heterogeneous between groups. Few forecasting software programs adequately implement out-of-sample evaluations, especially general statistical packages and spreadsheet add-ins.  相似文献   

8.
Deep neural networks and gradient boosted tree models have swept across the field of machine learning over the past decade, producing across-the-board advances in performance. The ability of these methods to capture feature interactions and nonlinearities makes them exceptionally powerful and, at the same time, prone to overfitting, leakage, and a lack of generalization in domains with target non-stationarity and collinearity, such as time-series forecasting. We offer guidance to address these difficulties and provide a framework that maximizes the chances of predictions that generalize well and deliver state-of-the-art performance. The techniques we offer for cross-validation, augmentation, and parameter tuning have been used to win several major time-series forecasting competitions—including the M5 Forecasting Uncertainty competition and the Kaggle COVID19 Forecasting series—and, with the proper theoretical grounding, constitute the current best practices in time-series forecasting.  相似文献   

9.
This paper describes the M5 “Uncertainty” competition, the second of two parallel challenges of the latest M competition, aiming to advance the theory and practice of forecasting. The particular objective of the M5 “Uncertainty” competition was to accurately forecast the uncertainty distributions of the realized values of 42,840 time series that represent the hierarchical unit sales of the largest retail company in the world by revenue, Walmart. To do so, the competition required the prediction of nine different quantiles (0.005, 0.025, 0.165, 0.250, 0.500, 0.750, 0.835, 0.975, and 0.995), that can sufficiently describe the complete distributions of future sales. The paper provides details on the implementation and execution of the M5 “Uncertainty” competition, presents its results and the top-performing methods, and summarizes its major findings and conclusions. Finally, it discusses the implications of its findings and suggests directions for future research.  相似文献   

10.
Forecasting competitions have been a major driver not only of improvements in forecasting methods’ performances, but also of the development of new forecasting approaches. However, despite the tremendous value and impact of these competitions, they do suffer from the limitation that performances are measured only in terms of the forecast accuracy and bias, ignoring utility metrics. Using the monthly industry series of the M3 competition, we empirically explore the inventory performances of various widely used forecasting techniques, including exponential smoothing, ARIMA models, the Theta method, and approaches based on multiple temporal aggregation. We employ a rolling simulation approach and analyse the results for the order-up-to policy under various lead times. We find that the methods that are based on combinations result in superior inventory performances, while the Naïve, Holt, and Holt-Winters methods perform poorly.  相似文献   

11.
The M5 Forecasting Competition, the fifth in the series of forecasting competitions organized by Professor Spyros Makridakis and the Makridakis Open Forecasting Center at the University of Nicosia, was an extremely successful event. This competition focused on both the accuracy and uncertainty of forecasts and leveraged actual historical sales data provided by Walmart. This has led to the M5 being a unique competition that closely parallels the difficulties and challenges associated with industrial applications of forecasting. Like its precursor the M4, many interesting ideas came from the results of the M5 competition which will continue to push forecasting in new directions.In this article we discuss four topics around the practitioners view of the application of the competition and its results to the actual problems we face. First, we examine the data provided and how it relates to common difficulties practitioners must overcome. Secondly, we review the relevance of the accuracy and uncertainty metrics associated with the competition. Third, we discuss the leading solutions and their implications to forecasting at a company like Walmart. We then close with thoughts about a future M6 competition and further enhancements that can be explored.  相似文献   

12.
Forecasting competitions are now so widespread that it is often forgotten how controversial they were when first held, and how influential they have been over the years. I briefly review the history of forecasting competitions, and discuss what we have learned about their design and implementation, and what they can tell us about forecasting. I also provide a few suggestions for potential future competitions, and for research about forecasting based on competitions.  相似文献   

13.
Several researchers (Armstrong, 2001; Clemen, 1989; Makridakis and Winkler, 1983) have shown empirically that combination-based forecasting methods are very effective in real world settings. This paper discusses a combination-based forecasting approach that was used successfully in the M4 competition. The proposed approach was evaluated on a set of 100K time series across multiple domain areas with varied frequencies. The point forecasts submitted finished fourth based on the overall weighted average (OWA) error measure and second based on the symmetric mean absolute percent error (sMAPE).  相似文献   

14.
In this study, we present the results of the M5 “Accuracy” competition, which was the first of two parallel challenges in the latest M competition with the aim of advancing the theory and practice of forecasting. The main objective in the M5 “Accuracy” competition was to accurately predict 42,840 time series representing the hierarchical unit sales for the largest retail company in the world by revenue, Walmart. The competition required the submission of 30,490 point forecasts for the lowest cross-sectional aggregation level of the data, which could then be summed up accordingly to estimate forecasts for the remaining upward levels. We provide details of the implementation of the M5 “Accuracy” challenge, as well as the results and best performing methods, and summarize the major findings and conclusions. Finally, we discuss the implications of these findings and suggest directions for future research.  相似文献   

15.
This commentary introduces a correlation analysis of the top-10 ranked forecasting methods that participated in the M4 forecasting competition. The “M” competitions attempt to promote and advance research in the field of forecasting by inviting both industry and academia to submit forecasting algorithms for evaluation over a large corpus of real-world datasets. After performing the initial analysis to derive the errors of each method, we proceed to investigate the pairwise correlations among them in order to understand the extent to which they produce errors in similar ways. Based on our results, we conclude that there is indeed a certain degree of correlation among the top-10 ranked methods, largely due to the fact that many of them consist of a combination of well-known, statistical and machine learning techniques. This fact has a strong impact on the results of the correlation analysis, and therefore leads to similar forecasting error patterns.  相似文献   

16.
Forecasting monthly and quarterly time series using STL decomposition   总被引:1,自引:0,他引:1  
This paper is a re-examination of the benefits and limitations of decomposition and combination techniques in the area of forecasting, and also a contribution to the field, offering a new forecasting method. The new method is based on the disaggregation of time series components through the STL decomposition procedure, the extrapolation of linear combinations of the disaggregated sub-series, and the reaggregation of the extrapolations to obtain estimates for the global series. Applying the forecasting method to data from the NN3 and M1 Competition series, the results suggest that it can perform well relative to four other standard statistical techniques from the literature, namely the ARIMA, Theta, Holt-Winters’ and Holt’s Damped Trend methods. The relative advantages of the new method are then investigated further relative to a simple combination of the four statistical methods and a Classical Decomposition forecasting method. The strength of the method lies in its ability to predict long lead times with relatively high levels of accuracy, and to perform consistently well for a wide range of time series, irrespective of the characteristics, underlying structure and level of noise of the data.  相似文献   

17.
This paper introduces the Random Walk with Drift plus AutoRegressive model (RWDAR) for time-series forecasting. Owing to the presence of a random walk plus drift term, this model shares some similarities with the Theta model of Assimakopoulos and Nikolopoulos (2000). However, the addition of a first-order autoregressive term in the state equation provides additional adaptability and flexibility. Indeed, it is shown that RWDAR tends to outperform the Theta model when forecasting both stationary and nearly non-stationary time series. This paper also proposes a simple estimation method for the RWDAR model based on the solution of the algebraic Riccati equation for the prediction error covariance of the state vector. Simulation results show that this estimator performs as well as the standard Kalman filter approach. Finally, using yearly data from the M3 and M4 competition datasets, it is found that RWDAR outperforms traditional forecasting methods.  相似文献   

18.
It has long been known that combination forecasting strategies produce superior out-of-sample forecasting performances. In the M4 forecasting competition, a very simple forecast combination strategy achieved third place on yearly time series. An analysis of the ensemble model and its component models suggests that the competitive accuracy comes from avoiding poor forecasts, rather than from beating the best individual models. Moreover, the simple ensemble model can be fitted very quickly, can easily scale horizontally with additional CPU cores or a cluster of computers, and can be implemented by users very quickly and easily. This approach might be of particular interest to users who need accurate yearly forecasts without being able to spend significant time, resources, or expertise on tuning models. Users of the R statistical programming language can access this modeling approach using the “forecastHybrid” package.  相似文献   

19.
The M4 competition identified innovative forecasting methods, advancing the theory and practice of forecasting. One of the most promising innovations of M4 was the utilization of cross-learning approaches that allow models to learn from multiple series how to accurately predict individual ones. In this paper, we investigate the potential of cross-learning by developing various neural network models that adopt such an approach, and we compare their accuracy to that of traditional models that are trained in a series-by-series fashion. Our empirical evaluation, which is based on the M4 monthly data, confirms that cross-learning is a promising alternative to traditional forecasting, at least when appropriate strategies for extracting information from large, diverse time series data sets are considered. Ways of combining traditional with cross-learning methods are also examined in order to initiate further research in the field.  相似文献   

20.
The Global Energy Forecasting Competition 2017 (GEFCom2017) attracted more than 300 students and professionals from over 30 countries for solving hierarchical probabilistic load forecasting problems. Of the series of global energy forecasting competitions that have been held, GEFCom2017 is the most challenging one to date: the first one to have a qualifying match, the first one to use hierarchical data with more than two levels, the first one to allow the usage of external data sources, the first one to ask for real-time ex-ante forecasts, and the longest one. This paper introduces the qualifying and final matches of GEFCom2017, summarizes the top-ranked methods, publishes the data used in the competition, and presents several reflections on the competition series and a vision for future energy forecasting competitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号