首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the estimation of the long-run variance of a stationary sequence. We extend the usual Bartlett-kernel heteroskedasticity and autocorrelation consistent (HAC) estimator to deal with long memory and antipersistence. We then derive asymptotic expansions for this estimator and the memory and autocorrelation consistent (MAC) estimator introduced by Robinson [Robinson, P. M., 2005. Robust covariance matrix estimation: HAC estimates with long memory/antipersistence correction. Econometric Theory 21, 171–180]. We offer a theoretical explanation for the sensitivity of HAC to the bandwidth choice, a feature which has been observed in the special case of short memory. Using these analytical results, we determine the MSE-optimal bandwidth rates for each estimator. We analyze by simulations the finite-sample performance of HAC and MAC estimators, and the coverage probabilities for the studentized sample mean, giving practical recommendations for the choice of bandwidths.  相似文献   

2.
Choosing instrumental variables in conditional moment restriction models   总被引:1,自引:0,他引:1  
Properties of GMM estimators are sensitive to the choice of instrument. Using many instruments leads to high asymptotic asymptotic efficiency but can cause high bias and/or variance in small samples. In this paper we develop and implement asymptotic mean square error (MSE) based criteria for instrument selection in estimation of conditional moment restriction models. The models we consider include various nonlinear simultaneous equations models with unknown heteroskedasticity. We develop moment selection criteria for the familiar two-step optimal GMM estimator (GMM), a bias corrected version, and generalized empirical likelihood estimators (GEL), that include the continuous updating estimator (CUE) as a special case. We also find that the CUE has lower higher-order variance than the bias-corrected GMM estimator, and that the higher-order efficiency of other GEL estimators depends on conditional kurtosis of the moments.  相似文献   

3.
HAC estimation in a spatial framework   总被引:2,自引:0,他引:2  
We suggest a non-parametric heteroscedasticity and autocorrelation consistent (HAC) estimator of the variance–covariance (VC) matrix for a vector of sample moments within a spatial context. We demonstrate consistency under a set of assumptions that should be satisfied by a wide class of spatial models. We allow for more than one measure of distance, each of which may be measured with error. Monte Carlo results suggest that our estimator is reasonable in finite samples. We then consider a spatial model containing various complexities and demonstrate that our HAC estimator can be applied in the context of that model.  相似文献   

4.
In this paper, we study the asymptotic properties of simulation extrapolation (SIMEX) based variance estimation that was proposed by Wang et al. (J R Stat Soc Series B 71:425–445, 2009). We first investigate the asymptotic normality of the parameter estimator in general parametric variance function and the local linear estimator for nonparametric variance function when permutation SIMEX (PSIMEX) is used. The asymptotic optimal bandwidth selection with respect to approximate mean integrated squared error (AMISE) for nonparametric estimator is also studied. We finally discuss constructing confidence intervals/bands of the parameter/function of interest. Other than applying the asymptotic results so that normal approximation can be used, we recommend a nonparametric Monte Carlo algorithm to avoid estimating the asymptotic variance of estimator. Simulation studies are carried out for illustration.  相似文献   

5.
Many estimation methods of truncated and censored regression models such as the maximum likelihood and symmetrically censored least squares (SCLS) are sensitive to outliers and data contamination as we document. Therefore, we propose a semiparametric general trimmed estimator (GTE) of truncated and censored regression, which is highly robust but relatively imprecise. To improve its performance, we also propose data-adaptive and one-step trimmed estimators. We derive the robust and asymptotic properties of all proposed estimators and show that the one-step estimators (e.g., one-step SCLS) are as robust as GTE and are asymptotically equivalent to the original estimator (e.g., SCLS). The finite-sample properties of existing and proposed estimators are studied by means of Monte Carlo simulations.  相似文献   

6.
Vector autoregressions (VARs) are important tools in time series analysis. However, relatively little is known about the finite-sample behaviour of parameter estimators. We address this issue, by investigating ordinary least squares (OLS) estimators given a data generating process that is a purely nonstationary first-order VAR. Specifically, we use Monte Carlo simulation and numerical optimisation to derive response surfaces for OLS bias and variance, in terms of VAR dimensions, given correct specification and several types of over-parameterisation of the model: we include a constant, and a constant and trend, and introduce excess lags. We then examine the correction factors that are required for the least squares estimator to attain the minimum mean squared error (MSE). Our results improve and extend one of the main finite-sample multivariate analytical bias results of Abadir, Hadri and Tzavalis [Abadir, K.M., Hadri, K., Tzavalis, E., 1999. The influence of VAR dimensions on estimator biases. Econometrica 67, 163–181], generalise the univariate variance and MSE findings of Abadir [Abadir, K.M., 1995. Unbiased estimation as a solution to testing for random walks. Economics Letters 47, 263–268] to the multivariate setting, and complement various asymptotic studies.  相似文献   

7.
This paper uses local-to-unity theory to evaluate the asymptotic mean-squared error (AMSE) and forecast expected squared error from least-squares estimation of an autoregressive model with a root close to unity. We investigate unconstrained estimation, estimation imposing the unit root constraint, pre-test estimation, model selection estimation, and model average estimation. We find that the asymptotic risk depends only on the local-to-unity parameter, facilitating simple graphical comparisons. Our results strongly caution against pre-testing. Strong evidence supports averaging based on Mallows weights. In particular, our Mallows averaging method has uniformly and substantially smaller risk than the conventional unconstrained estimator, and this holds for autoregressive roots far from unity. Our averaging estimator is a new approach to forecast combination.  相似文献   

8.
We study a Tikhonov Regularized (TiR) estimator of a functional parameter identified by conditional moment restrictions in a linear model with both exogenous and endogenous regressors. The nonparametric instrumental variable estimator is based on a minimum distance principle with penalization by the norms of the parameter and its derivatives. After showing its consistency in the Sobolev norm and uniform consistency under an embedding condition, we derive the expression of the asymptotic Mean Integrated Square Error and the rate of convergence. The optimal value of the regularization parameter is characterized in two examples. We illustrate our theoretical findings and the small sample properties with simulation results. Finally, we provide an empirical application to estimation of an Engel curve, and discuss a data driven selection procedure for the regularization parameter.  相似文献   

9.
We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root-nn asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided.  相似文献   

10.
S. E. Ahmed 《Metrika》1998,47(1):35-45
The problem of simultaneous asymptotic estimation of eigenvalues of covariance matrix of Wishart matrix is considered under a weighted quadratic loss function. James-Stein type of estimators are obtained which dominate the sample eigenvalues. The relative merits of the proposed estimators are compared to the sample eigenvalues using asymptotic quadratic distributional risk under loal alternatives. It is shown that the proposed estimators are asymptotically superior to the sample eigenvalues. Further, it is demonstrated that the James-Stein type estimator is dominated by its truncated part.  相似文献   

11.
Sequential estimation problems for the mean parameter of an exponential distribution has received much attention over the years. Purely sequential and accelerated sequential estimators and their asymptotic second-order characteristics have been laid out in the existing literature, both for minimum risk point as well as bounded length confidence interval estimation of the mean parameter. Having obtained a data set from such sequentially designed experiments, the paper investigates estimation problems for the associatedreliability function. Second-order approximations are provided for the bias and mean squared error of the proposed estimator of the reliability function, first under a general setup. An ad hoc bias-corrected version is also introduced. Then, the proposed estimator is investigated further under some specific sequential sampling strategies, already available in the literature. In the end, simulation results are presented for comparing the proposed estimators of the reliability function for moderate sample sizes and various sequential sampling strategies.  相似文献   

12.
Sándor Baran 《Metrika》2000,51(2):117-132
The problem of estimation in nonlinear functional errors-in-variables model is considered. A modified least squares estimator is studied, its consistency and asymptotic normality is established. Simulation results are also presented showing the performance of the estimator in comparison with the naive ordinary least squares estimator. Received: June 1999  相似文献   

13.
This article considers the asymptotic estimation theory for the proportion in randomized response survey usinguncertain prior information (UPI) about the true proportion parameter which is assumed to be available on the basis of some sort of realistic conjecture. Three estimators, namely, the unrestricted estimator, the shrinkage restricted estimator and an estimator based on a preliminary test, are proposed. Their asymptotic mean squared errors are derived and compared. The relative dominance picture of the estimators is presented.  相似文献   

14.
Salima El Kolei 《Metrika》2013,76(8):1031-1081
We study a new parametric approach for particular hidden stochastic models. This method is based on contrast minimization and deconvolution and can be applied, for example, for ecological and financial state space models. After proving consistency and asymptotic normality of the estimation leading to asymptotic confidence intervals, we provide a thorough numerical study, which compares most of the classical methods that are used in practice (Quasi-Maximum Likelihood estimator, Simulated Expectation Maximization Likelihood estimator and Bayesian estimators) to estimate the Stochastic Volatility model. We prove that our estimator clearly outperforms the Maximum Likelihood Estimator in term of computing time, but also most of the other methods. We also show that this contrast method is the most robust with respect to non Gaussianity of the error and also does not need any tuning parameter.  相似文献   

15.
In this paper, we consider GMM estimation of the regression and MRSAR models with SAR disturbances. We derive the best GMM estimator within the class of GMM estimators based on linear and quadratic moment conditions. The best GMM estimator has the merit of computational simplicity and asymptotic efficiency. It is asymptotically as efficient as the ML estimator under normality and asymptotically more efficient than the Gaussian QML estimator otherwise. Monte Carlo studies show that, with moderate-sized samples, the best GMM estimator has its biggest advantage when the disturbances are asymmetrically distributed. When the diagonal elements of the spatial weights matrix have enough variation, incorporating kurtosis of the disturbances in the moment functions will also be helpful.  相似文献   

16.
Maximum likelihood estimation can be consistent and asymptotically normal despite serial correlation in the residuals. The usual estimator of the asymptotic covariance of the parameter estimator is inconsistent, but an alternative consistent estimator is derived.  相似文献   

17.
This paper focuses on the estimation of a finite dimensional parameter in a linear model where the number of instruments is very large or infinite. In order to improve the small sample properties of standard instrumental variable (IV) estimators, we propose three modified IV estimators based on three different ways of inverting the covariance matrix of the instruments. These inverses involve a regularization or smoothing parameter. It should be stressed that no restriction on the number of instruments is needed and that all the instruments are used in the estimation. We show that the three estimators are asymptotically normal and attain the semiparametric efficiency bound. Higher-order analysis of the MSE reveals that the bias of the modified estimators does not depend on the number of instruments. Finally, we suggest a data-driven method for selecting the regularization parameter. Interestingly, our regularization techniques lead to a consistent nonparametric estimation of the optimal instrument.  相似文献   

18.
This work deals with parameter estimation for the drift of jump diffusion processes which are driven by a Lévy process and whose drift term is linear in the parameter. In contrast to the commonly used maximum likelihood estimator, our proposed estimator has the practical advantage that its calculation does not require the evaluation of the continuous part of the sample path. In the important case of an Ornstein‐Uhlenbeck‐type jump diffusion, which is a widely used model, we prove consistency and asymptotic normality.  相似文献   

19.
We consider the problem of estimating a varying coefficient regression model when regressors include a time trend. We show that the commonly used local constant kernel estimation method leads to an inconsistent estimation result, while a local polynomial estimator yields a consistent estimation result. We establish the asymptotic normality result for the proposed estimator. We also provide asymptotic analysis of the data-driven (least squares cross validation) method of selecting the smoothing parameters. In addition, we consider a partially linear time trend model and establish the asymptotic distribution of our proposed estimator. Two test statistics are proposed to test the null hypotheses of a linear and of a partially linear time trend models. Simulations are reported to examine the finite sample performances of the proposed estimators and the test statistics.  相似文献   

20.
In this article, we consider nonparametric regression analysis between two variables when data are sampled through a complex survey. While nonparametric regression analysis has been widely used with data that may be assumed to be generated from independently and identically distributed (iid) random variables, the methods and asymptotic analyses established for iid data need to be extended in the framework of complex survey designs. Local polynomial regression estimators are studied, which include as particular cases design-based versions of the Nadaraya–Watson estimator and of the local linear regression estimator. In this paper, special emphasis is given to the local linear regression estimator. Our estimators incorporate both the sampling weights and the kernel weights. We derive the asymptotic mean squared error (MSE) of the kernel estimators using a combined inference framework, and as a corollary consistency of the estimators is deduced. Selection of a bandwidth is necessary for the resulting estimators; an optimal bandwidth can be determined, according to the MSE criterion in the combined mode of inference. Simulation experiments are conducted to illustrate the proposed methodology and an application with the Canadian survey of labour and income dynamics is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号