首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We present in a Monte Carlo simulation framework, a novel approach for the evaluation of hybrid local volatility [Risk, 1994, 7, 18–20], [Int. J. Theor. Appl. Finance, 1998, 1, 61–110] models. In particular, we consider the stochastic local volatility model—see e.g. Lipton et al. [Quant. Finance, 2014, 14, 1899–1922], Piterbarg [Risk, 2007, April, 84–89], Tataru and Fisher [Quantitative Development Group, Bloomberg Version 1, 2010], Lipton [Risk, 2002, 15, 61–66]—and the local volatility model incorporating stochastic interest rates—see e.g. Atlan [ArXiV preprint math/0604316, 2006], Piterbarg [Risk, 2006, 19, 66–71], Deelstra and Rayée [Appl. Math. Finance, 2012, 1–23], Ren et al. [Risk, 2007, 20, 138–143]. For both model classes a particular (conditional) expectation needs to be evaluated which cannot be extracted from the market and is expensive to compute. We establish accurate and ‘cheap to evaluate’ approximations for the expectations by means of the stochastic collocation method [SIAM J. Numer. Anal., 2007, 45, 1005–1034], [SIAM J. Sci. Comput., 2005, 27, 1118–1139], [Math. Models Methods Appl. Sci., 2012, 22, 1–33], [SIAM J. Numer. Anal., 2008, 46, 2309–2345], [J. Biomech. Eng., 2011, 133, 031001], which was recently applied in the financial context [Available at SSRN 2529691, 2014], [J. Comput. Finance, 2016, 20, 1–19], combined with standard regression techniques. Monte Carlo pricing experiments confirm that our method is highly accurate and fast.  相似文献   

2.
Helin Zhu  Fan Ye 《Quantitative Finance》2013,13(11):1885-1900
Fast pricing of American-style options has been a difficult problem since it was first introduced to the financial markets in 1970s, especially when the underlying stocks’ prices follow some jump-diffusion processes. In this paper, we extend the ‘true martingale algorithm’ proposed by Belomestny et al. [Math. Finance, 2009, 19, 53–71] for the pure-diffusion models to the jump-diffusion models, to fast compute true tight upper bounds on the Bermudan option price in a non-nested simulation manner. By exploiting the martingale representation theorem on the optimal dual martingale driven by jump-diffusion processes, we are able to explore the unique structure of the optimal dual martingale and construct an approximation that preserves the martingale property. The resulting upper bound estimator avoids the nested Monte Carlo simulation suffered by the original primal–dual algorithm, therefore significantly improving the computational efficiency. Theoretical analysis is provided to guarantee the quality of the martingale approximation. Numerical experiments are conducted to verify the efficiency of our algorithm.  相似文献   

3.
We present a new approach for pricing collateralized debt obligations (CDOs) which takes into account the issue of the market incompleteness. In particular, we develop a suitable extension of the actuarial framework proposed by Bayraktar et al. [Valuation of mortality risk via the instantaneous Sharpe ratio: Applications to life annuities. J. Econ. Dyn. Control, 2009, 33, 676–691], Milevsky et al. [Financial valuation of mortality risk via the instantaneous Sharpe-ratio: Applications to pricing pure endowments. Working Paper, 2007. Available at: http://arxiv.org/abs/0705.1302], Young [Pricing life insurance under stochastic mortality via the instantaneous Sharpe ratio: Theorems and proofs. Technical Report, 2007. Available at: http://arxiv.org/abs/0705.1297] and Young [Pricing life insurance under stochastic mortality via the instantaneous Sharpe ratio. Insurance: Math. Econ., 2008, 42, 691–703], which is based on the so-called instantaneous Sharpe ratio. Such a procedure allows us to incorporate the attitude of investors towards risk in a direct and rational way and, in addition, is also suitable for dealing with the often illiquid CDO market. Numerical experiments are presented which reveal that the market incompleteness can have a strong effect on the pricing of CDOs, and allows us to explain the high bid-ask spreads that are frequently observed in the markets.  相似文献   

4.
This article presents a pure exchange economy that extends Rubinstein [Bell J. Econ. Manage. Sci., 1976, 7, 407–425] to show how the jump-diffusion option pricing model of Black and Scholes [J. Political Econ., 1973, 81, 637–654] and Merton [J. Financ. Econ., 1976, 4, 125–144] evolves in gamma jumping economies. From empirical analysis and theoretical study, both the aggregate consumption and the stock price are unknown in determining jumping times. By using the pricing kernel, we determine both the aggregate consumption jump time and the stock price jump time from the equilibrium interest rate and CCAPM (Consumption Capital Asset Pricing Model). Our general jump-diffusion option pricing model gives an explicit formula for how the jump process and the jump times alter the pricing. This innovation with predictable jump times enhances our analysis of the expected stock return in equilibrium and of hedging jump risks for jump-diffusion economies.  相似文献   

5.
In this paper, we will present a multiple time step Monte Carlo simulation technique for pricing options under the Stochastic Alpha Beta Rho model. The proposed method is an extension of the one time step Monte Carlo method that we proposed in an accompanying paper Leitao et al. [Appl. Math. Comput. 2017, 293, 461–479], for pricing European options in the context of the model calibration. A highly efficient method results, with many very interesting and nontrivial components, like Fourier inversion for the sum of log-normals, stochastic collocation, Gumbel copula, correlation approximation, that are not yet seen in combination within a Monte Carlo simulation. The present multiple time step Monte Carlo method is especially useful for long-term options and for exotic options.  相似文献   

6.
This paper extends the Fourier-cosine (COS) method to the pricing and hedging of variable annuities embedded with guaranteed minimum withdrawal benefit (GMWB) riders. The COS method facilitates efficient computation of prices and hedge ratios of the GMWB riders when the underlying fund dynamics evolve under the influence of the general class of Lévy processes. Formulae are derived to value the contract at each withdrawal date using a backward recursive dynamic programming algorithm. Numerical comparisons are performed with results presented in Bacinello et al. [Scand. Actuar. J., 2014, 1–20], and Luo and Shevchenko [Int. J. Financ. Eng., 2014, 2, 1–24], to confirm the accuracy of the method. The efficiency of the proposed method is assessed by making comparisons with the approach presented in Bacinello et al. [op. cit.]. We find that the COS method presents highly accurate results with notably fast computational times. The valuation framework forms the basis for GMWB hedging. A local risk minimisation approach to hedging intra-withdrawal date risks is developed. A variety of risk measures are considered for minimisation in the general Lévy framework. While the second moment and variance have been considered in existing literature, we show that the Value-at-Risk (VaR) may also be of interest as a risk measure to minimise risk in variable annuities portfolios.  相似文献   

7.
In this work we derive new closed-form pricing formulas for VIX options in the jump-diffusion SVJJ model proposed by Duffie et al. [Econometrica, 2000, 68, 1343–1376]. Our approach is based on the classic methodology of approximating a density function with an orthogonal expansion of polynomials weighted by a kernel. Orthogonal expansions based on the Gaussian distribution, such as Edgeworth or Gram–Charlier expansions, have been successfully employed by a number of authors in the context of equity options. However, these expansions are not quite suitable for volatility or variance densities as they inherently assign positive mass to the negative real line. Here we approximate option prices via expansions that instead are based on kernels defined on the positive real line. Specifically, we consider a flexible family of distributions, which generalizes the gamma kernel associated with the classic Laguerre expansions. The method can be employed whenever the moments of the underlying variance distribution are known. It provides fast and accurate price computations, and therefore it represents a valid and possibly more robust alternative to pricing techniques based on Fourier transform inversions.  相似文献   

8.
Abstract

We consider the three-factor double mean reverting (DMR) option pricing model of Gatheral [Consistent Modelling of SPX and VIX Options, 2008], a model which can be successfully calibrated to both VIX options and SPX options simultaneously. One drawback of this model is that calibration may be slow because no closed form solution for European options exists. In this paper, we apply modified versions of the second-order Monte Carlo scheme of Ninomiya and Victoir [Appl. Math. Finance, 2008, 15, 107–121], and compare these to the Euler–Maruyama scheme with full truncation of Lord et al. [Quant. Finance, 2010, 10(2), 177–194], demonstrating on the one hand that fast calibration of the DMR model is practical, and on the other that suitably modified Ninomiya–Victoir schemes are applicable to the simulation of much more complicated time-homogeneous models than may have been thought previously.  相似文献   

9.
We suggest an improved FFT pricing algorithm for discretely sampled Asian options with general independently distributed returns in the underlying. Our work complements the studies of Carverhill and Clewlow [Risk, 1990, 3(4), 25–29], Benhamou [J. Comput. Finance, 2002, 6(1), 49–68], and Fusai and Meucci [J. Bank. Finance, 2008, 32(10), 2076–2088], and, if we restrict our attention only to log-normally distributed returns, also Ve?e? [Risk, 2002, 15(6), 113–116]. While the existing convolution algorithms compute the density of the underlying state variable by moving forward on a suitably defined state space grid, our new algorithm uses backward price convolution, which resembles classical lattice pricing algorithms. For the first time in the literature we provide an analytical upper bound for the pricing error caused by the truncation of the state space grid and by the curtailment of the integration range. We highlight the benefits of the new scheme and benchmark its performance against existing finite difference, Monte Carlo, and forward density convolution algorithms.  相似文献   

10.
This paper develops a discrete time version of the continuous time model of Bouchard et al. [J. Control Optim., 2009, 48, 3123–3150], for the problem of finding the minimal initial data for a controlled process to guarantee reaching a controlled target with probability one. An efficient numerical algorithm, based on dynamic programming, is proposed for the quantile hedging of standard call and put options, exotic options and quantile hedging with portfolio constraints. The method is then extended to solve utility indifference pricing, good-deal bounds and expected shortfall problems.  相似文献   

11.
This paper considers the problem of pricing American options when the dynamics of the underlying are driven by both stochastic volatility following a square-root process as used by Heston [Rev. Financial Stud., 1993, 6, 327–343], and by a Poisson jump process as introduced by Merton [J. Financial Econ., 1976, 3, 125–144]. Probability arguments are invoked to find a representation of the solution in terms of expectations over the joint distribution of the underlying process. A combination of Fourier transform in the log stock price and Laplace transform in the volatility is then applied to find the transition probability density function of the underlying process. It turns out that the price is given by an integral dependent upon the early exercise surface, for which a corresponding integral equation is obtained. The solution generalizes in an intuitive way the structure of the solution to the corresponding European option pricing problem obtained by Scott [Math. Finance, 1997, 7(4), 413–426], but here in the case of a call option and constant interest rates.  相似文献   

12.
We provide the first recursive quantization-based approach for pricing options in the presence of stochastic volatility. This method can be applied to any model for which an Euler scheme is available for the underlying price process and it allows one to price vanillas, as well as exotics, thanks to the knowledge of the transition probabilities for the discretized stock process. We apply the methodology to some celebrated stochastic volatility models, including the Stein and Stein [Rev. Financ. Stud. 1991, (4), 727–752] model and the SABR model introduced in Hagan et al. [Wilmott Mag., 2002, 84–108]. A numerical exercise shows that the pricing of vanillas turns out to be accurate; in addition, when applied to some exotics like equity-volatility options, the quantization-based method overperforms by far the Monte Carlo simulation.  相似文献   

13.
The rough Bergomi model, introduced by Bayer et al. [Quant. Finance, 2016, 16(6), 887–904], is one of the recent rough volatility models that are consistent with the stylised fact of implied volatility surfaces being essentially time-invariant, and are able to capture the term structure of skew observed in equity markets. In the absence of analytical European option pricing methods for the model, we focus on reducing the runtime-adjusted variance of Monte Carlo implied volatilities, thereby contributing to the model’s calibration by simulation. We employ a novel composition of variance reduction methods, immediately applicable to any conditionally log-normal stochastic volatility model. Assuming one targets implied volatility estimates with a given degree of confidence, thus calibration RMSE, the results we demonstrate equate to significant runtime reductions—roughly 20 times on average, across different correlation regimes.  相似文献   

14.
The exploration of the mean-reversion of commodity prices is important for inventory management, inflation forecasting and contingent claim pricing. Bessembinder et al. [J. Finance, 1995, 50, 361–375] document the mean-reversion of commodity spot prices using futures term structure data; however, mean-reversion to a constant level is rejected in nearly all studies using historical spot price time series. This indicates that the spot prices revert to a stochastic long-run mean. Recognizing this, I propose a reduced-form model with the stochastic long-run mean as a separate factor. This model fits the futures dynamics better than do classical models such as the Gibson–Schwartz [J. Finance, 1990, 45, 959–976] model and the Casassus–Collin-Dufresne [J. Finance, 2005, 60, 2283–2331] model with a constant interest rate. An application for option pricing is also presented in this paper.  相似文献   

15.
Nian Yang 《Quantitative Finance》2018,18(10):1767-1779
The stochastic-alpha-beta-rho (SABR) model is widely used by practitioners in interest rate and foreign exchange markets. The probability of hitting zero sheds light on the arbitrage-free small strike implied volatility of the SABR model (see, e.g. De Marco et al. [SIAM J. Financ. Math., 2017, 8(1), 709–737], Gulisashvili [Int. J. Theor. Appl. Financ., 2015, 18, 1550013], Gulisashvili et al. [Mass at zero in the uncorrelated SABR modeland implied volatility asymptotics, 2016b]), and the survival probability is also closely related to binary knock-out options. Besides, the study of the survival probability is mathematically challenging. This paper provides novel asymptotic formulas for the survival probability of the SABR model as well as error estimates. The formulas give the probability that the forward price does not hit a nonnegative lower boundary before a fixed time horizon.  相似文献   

16.
We consider the pricing of FX, inflation and stock options under stochastic interest rates and stochastic volatility, for which we use a generic multi-currency framework. We allow for a general correlation structure between the drivers of the volatility, the inflation index, the domestic (nominal) and the foreign (real) rates. Having the flexibility to correlate the underlying FX/inflation/stock index with both stochastic volatility and stochastic interest rates yields a realistic model that is of practical importance for the pricing and hedging of options with a long-term exposure. We derive explicit valuation formulas for various securities, such as vanilla call/put options, forward starting options, inflation-indexed swaps and inflation caps/floors. These vanilla derivatives can be valued in closed form under Schöbel and Zhu [Eur. Finance Rev., 1999, 4, 23–46] stochastic volatility, whereas we devise an (Monte Carlo) approximation in the form of a very effective control variate for the general Heston [Rev. Financial Stud., 1993, 6, 327–343] model. Finally, we investigate the quality of this approximation numerically and consider a calibration example to FX and inflation market data.  相似文献   

17.
Motivated by the practical challenge in monitoring the performance of a large number of algorithmic trading orders, this paper provides a methodology that leads to automatic discovery of causes that lie behind poor trading performance. It also gives theoretical foundations to a generic framework for real-time trading analysis. The common acronym for investigating the causes of bad and good performance of trading is transaction cost analysis Rosenthal [Performance Metrics for Algorithmic Traders, 2009]). Automated algorithms take care of most of the traded flows on electronic markets (more than 70% in the US, 45% in Europe and 35% in Japan in 2012). Academic literature provides different ways to formalize these algorithms and show how optimal they can be from a mean-variance (like in Almgren and Chriss [J. Risk, 2000, 3(2), 5–39]), a stochastic control (e.g. Guéant et al. [Math. Financ. Econ., 2013, 7(4), 477–507]), an impulse control (see Bouchard et al. [SIAM J. Financ. Math., 2011, 2(1), 404–438]) or a statistical learning (as used in Laruelle et al. [Math. Financ. Econ., 2013, 7(3), 359–403]) viewpoint. This paper is agnostic about the way the algorithm has been built and provides a theoretical formalism to identify in real-time the market conditions that influenced its efficiency or inefficiency. For a given set of characteristics describing the market context, selected by a practitioner, we first show how a set of additional derived explanatory factors, called anomaly detectors, can be created for each market order (following for instance Cristianini and Shawe-Taylor [An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, 2000]). We then will present an online methodology to quantify how this extended set of factors, at any given time, predicts (i.e. have influence, in the sense of predictive power or information defined in Basseville and Nikiforov [Detection of Abrupt Changes: Theory and Application, 1993], Shannon [Bell Syst. Tech. J., 1948, 27, 379–423] and Alkoot and Kittler [Pattern Recogn. Lett., 1999, 20(11), 1361–1369]) which of the orders are underperforming while calculating the predictive power of this explanatory factor set. Armed with this information, which we call influence analysis, we intend to empower the order monitoring user to take appropriate action on any affected orders by re-calibrating the trading algorithms working the order through new parameters, pausing their execution or taking over more direct trading control. Also we intend that use of this method can be taken advantage of to automatically adjust their trading action in the post trade analysis of algorithms.  相似文献   

18.
The rough Bergomi model introduced by Bayer et al. [Quant. Finance, 2015, 1–18] has been outperforming conventional Markovian stochastic volatility models by reproducing implied volatility smiles in a very realistic manner, in particular for short maturities. We investigate here the dynamics of the VIX and the forward variance curve generated by this model, and develop efficient pricing algorithms for VIX futures and options. We further analyse the validity of the rough Bergomi model to jointly describe the VIX and the SPX, and present a joint calibration algorithm based on the hybrid scheme by Bennedsen et al. [Finance Stoch., forthcoming].  相似文献   

19.
Option hedging is a critical risk management problem in finance. In the Black–Scholes model, it has been recognized that computing a hedging position from the sensitivity of the calibrated model option value function is inadequate in minimizing variance of the option hedge risk, as it fails to capture the model parameter dependence on the underlying price (see e.g. Coleman et al., J. Risk, 2001, 5(6), 63–89; Hull and White, J. Bank. Finance, 2017, 82, 180–190). In this paper, we demonstrate that this issue can exist generally when determining hedging position from the sensitivity of the option function, either calibrated from a parametric model from current option prices or estimated nonparametricaly from historical option prices. Consequently, the sensitivity of the estimated model option function typically does not minimize variance of the hedge risk, even instantaneously. We propose a data-driven approach to directly learn a hedging function from the market data by minimizing variance of the local hedge risk. Using the S&P 500 index daily option data for more than a decade ending in August 2015, we show that the proposed method outperforms the parametric minimum variance hedging method proposed in Hull and White [J. Bank. Finance, 2017, 82, 180–190], as well as minimum variance hedging corrective techniques based on stochastic volatility or local volatility models. Furthermore, we show that the proposed approach achieves significant gain over the implied BS delta hedging for weekly and monthly hedging.  相似文献   

20.
This study presents a set of closed-form exact solutions for pricing discretely sampled variance swaps and volatility swaps, based on the Heston stochastic volatility model with regime switching. In comparison with all the previous studies in the literature, this research, which obtains closed-form exact solutions for variance and volatility swaps with discrete sampling times, serves several purposes. (1) It verifies the degree of validity of Elliott et al.'s [Appl. Math. Finance, 2007, 14(1), 41–62] continuous-sampling-time approximation for variance and volatility swaps of relatively short sampling periods. (2) It examines the effect of ignoring regime switching on pricing variance and volatility swaps. (3) It contributes to bridging the gap between Zhu and Lian's [Math. Finance, 2011, 21(2), 233–256] approach and Elliott et al.'s framework. (4) Finally, it presents a semi-Monte-Carlo simulation for the pricing of other important realized variance based derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号