首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Volatility clustering and leverage are two of the most prominent stylized features of the dynamics of asset prices. In order to incorporate these features as well as the typical fat-tails of the log return distributions, several types of exponential Lévy models driven by random clocks have been proposed in the literature. These models constitute a viable alternative to the classical stochastic volatility approach based on SDEs driven by Wiener processes. This paper has two main objectives. First, using threshold type estimators based on high-frequency discrete observations of the process, we consider the recovery problem of the underlying random clock of the process. We show consistency of our estimator in the mean-square sense, extending former results in the literature for more general Lévy processes and for irregular sampling schemes. Secondly, we illustrate empirically the estimation of the random clock, the Blumenthal-Geetor index of jump activity, and the spectral Lévy measure of the process using real intraday high-frequency data.  相似文献   

2.
The price of an American-style contract on assets driven by a class of Markov processes containing, in particular, Lévy processes of pure jump type with infinite jump activity is expressed as the solution of a parabolic variational integro-differential inequality (PIDI). A Galerkin discretization in logarithmic price using a wavelet basis is presented. Log-linear complexity in each time-step is achieved by wavelet compression of the moment matrix of the price process’ jump measure and by wavelet preconditioning of the large matrix LCPs at each time-step. Efficiency is demonstrated by numerical experiments for pricing American put contracts on various jump-diffusion and pure jump models. Failure of the smooth pasting principle is observed for American put contracts for certain finite variation pure jump price processes.  相似文献   

3.
We develop a switching regime version of the intensity model for credit risk pricing. The default event is specified by a Poisson process whose intensity is modeled by a switching Lévy process. This model presents several interesting features. First, as Lévy processes encompass numerous jump processes, our model can duplicate the sudden jumps observed in credit spreads. Also, due to the presence of jumps, probabilities do not vanish at very short maturities, contrary to models based on Brownian dynamics. Furthermore, as the parameters of the Lévy process are modulated by a hidden Markov chain, our approach is well suited to model changes of volatility trends in credit spreads, related to modifications of unobservable economic factors.  相似文献   

4.
The goal of the paper is to show that some types of Lévy processes such as the hyperbolic motion and the CGMY are particularly suitable for asset price modelling and option pricing. We wish to review some fundamental mathematic properties of Lévy distributions, such as the one of infinite divisibility, and how they translate observed features of asset price returns. We explain how these processes are related to Brownian motion, the central process in finance, through stochastic time changes which can in turn be interpreted as a measure of the economic activity. Lastly, we focus on two particular classes of pure jump Lévy processes, the generalized hyperbolic model and the CGMY models, and report on the goodness of fit obtained both on stock prices and option prices.  相似文献   

5.
For d-dimensional exponential Lévy models, variational formulations of the Kolmogorov equations arising in asset pricing are derived. Well-posedness of these equations is verified. Particular attention is paid to pure jump, d-variate Lévy processes built from parametric, copula dependence models in their jump structure. The domains of the associated Dirichlet forms are shown to be certain anisotropic Sobolev spaces. Singularity-free representations of the Dirichlet forms are given which remain bounded for piecewise polynomial, continuous functions of finite element type. We prove that the variational problem can be localized to a bounded domain with explicit localization error bounds. Furthermore, we collect several analytical tools for further numerical analysis.  相似文献   

6.
In this paper we propose a general derivative pricing framework that employs decoupled time-changed (DTC) Lévy processes to model the underlying assets of contingent claims. A DTC Lévy process is a generalized time-changed Lévy process whose continuous and pure jump parts are allowed to follow separate random time scalings; we devise the martingale structure for a DTC Lévy-driven asset and revisit many popular models which fall under this framework. Postulating different time changes for the underlying Lévy decomposition allows the introduction of asset price models consistent with the assumption of a correlated pair of continuous and jump market activity rates; we study one illustrative DTC model of this kind based on the so-called Wishart process. The theory we develop is applied to the problem of pricing not only claims that depend on the price or the volatility of an underlying asset, but also more sophisticated derivatives whose payoffs rely on the joint performance of these two financial variables, such as the target volatility option. We solve the pricing problem through a Fourier-inversion method. Numerical analyses validating our techniques are provided. In particular, we present some evidence that correlating the activity rates could be beneficial for modeling the volatility skew dynamics.  相似文献   

7.
In this paper we propose a transform method to compute the prices and Greeks of barrier options driven by a class of Lévy processes. We derive analytical expressions for the Laplace transforms in time of the prices and sensitivities of single barrier options in an exponential Lévy model with hyper-exponential jumps. Inversion of these single Laplace transforms yields rapid, accurate results. These results are employed to construct an approximation of the prices and sensitivities of barrier options in exponential generalized hyper-exponential Lévy models. The latter class includes many of the Lévy models employed in quantitative finance such as the variance gamma (VG), KoBoL, generalized hyperbolic, and the normal inverse Gaussian (NIG) models. Convergence of the approximating prices and sensitivities is proved. To provide a numerical illustration, this transform approach is compared with Monte Carlo simulation in cases where the driving process is a VG and a NIG Lévy process. Parameters are calibrated to Stoxx50E call options.  相似文献   

8.
For decades, financial institutions have been very motivated in creating structured high-yield financial products, especially in the economic environment of lower interest rates. Reverse convertible notes (RCNs) are the type of financial instruments, which in recent years first in Europe and then in the US – have become highly desirable financial structured products. They are complex financial structured products because they are neither plain bonds nor stocks. Instead, they are structured products embedding equity options, which involve a significant amount of asset returns' uncertainty. Given this fact, pricing of reverse convertible notes becomes a really big challenge, where both the general Black–Scholes option pricing model and the compound Poisson jump model which are designed to catch large crashes, are not suitable in valuing these kinds of products. In this paper, we propose a new asset-pricing framework for reverse convertible notes by extending the pure Brownian increments to Lévy jump risks for the underlying stock return movements. Our framework deals with time-changing volatilities of stock options with Lévy jump processes by considering the stocks' infinite-jump possibilities. We then use a discrete-time GARCH with time-changed dynamics Lévy Jump processes in order to derive the assets' valuations. The results from our new model are close to the market's valuations, especially with the normal-inverse-Gaussian model of the Lévy jump family.  相似文献   

9.
In a series of papers during the last ten years an interest rate theory with models which are driven by Lévy or more general processes has been developed. In this paper we derive explicit formulas for the correlations of interest rates as well as zero coupon bonds with different maturities. The models considered in this general setting are the forward rate (HJM), the forward process and the LIBOR model as well as the multicurrency extension of the latter. Specific subclasses of the class of generalized hyperbolic Lévy motions are studied as driving processes. Based on a data set of parametrized yield curves derived from German government bond prices we estimate correlations. In a second step the empirical correlations are used to calibrate the Lévy forward rate model. The superior performance of the Lévy driven models becomes obvious from the graphs.  相似文献   

10.
Lévy processes are popular models for stock price behavior since they allow to take into account jump risk and reproduce the implied volatility smile. In this paper, we focus on the tempered stable (also known as CGMY) processes, which form a flexible 6-parameter family of Lévy processes with infinite jump intensity. It is shown that under an appropriate equivalent probability measure a tempered stable process becomes a stable process whose increments can be simulated exactly. This provides a fast Monte Carlo algorithm for computing the expectation of any functional of tempered stable process. We use our method to price European options and compare the results to a recent approximate simulation method for tempered stable process by Madan and Yor (CGMY and Meixner Subordinators are absolutely continuous with respect to one sided stable subordinators, 2005).  相似文献   

11.
In this work we propose a new and general approach to build dependence in multivariate Lévy processes. We fully characterize a multivariate Lévy process whose margins are able to approximate any Lévy type. Dependence is generated by one or more common sources of jump intensity separately in jumps of any sign and size and a parsimonious method to determine the intensities of these common factors is proposed. Such a new approach allows the calibration of any smooth transition between independence and a large amount of linear dependence and provides greater flexibility in calibrating nonlinear dependence than in other comparable Lévy models in the literature. The model is analytically tractable and a straightforward multivariate simulation procedure is available. An empirical analysis shows an accurate multivariate fit of stock returns in terms of linear and nonlinear dependence. A numerical illustration of multi-asset option pricing emphasizes the importance of the proposed new approach for modeling dependence.  相似文献   

12.
This paper studies the parameter estimation problem for Ornstein–Uhlenbeck stochastic volatility models driven by Lévy processes. Estimation is regarded as the principal challenge in applying these models since they were proposed by Barndorff-Nielsen and Shephard [J. R. Stat. Soc. Ser. B, 2001, 63(2), 167–241]. Most previous work has used a Bayesian paradigm, whereas we treat the problem in the framework of maximum likelihood estimation, applying gradient-based simulation optimization. A hidden Markov model is introduced to formulate the likelihood of observations; sequential Monte Carlo is applied to sample the hidden states from the posterior distribution; smooth perturbation analysis is used to deal with the discontinuities introduced by jumps in estimating the gradient. Numerical experiments indicate that the proposed gradient-based simulated maximum likelihood estimation approach provides an efficient alternative to current estimation methods.  相似文献   

13.
Confidence intervals and joint confidence sets are constructed for the nonparametric calibration of exponential Lévy models based on prices of European options. To this end, we show joint asymptotic normality in the spectral calibration method for the estimators of the volatility, the drift, the jump intensity and the Lévy density at finitely many points.  相似文献   

14.
We introduce a class of Markov processes, called m-polynomial, for which the calculation of (mixed) moments up to order m only requires the computation of matrix exponentials. This class contains affine processes, processes with quadratic diffusion coefficients, as well as Lévy-driven SDEs with affine vector fields. Thus, many popular models such as exponential Lévy models or affine models are covered by this setting. The applications range from statistical GMM estimation procedures to new techniques for option pricing and hedging. For instance, the efficient and easy computation of moments can be used for variance reduction techniques in Monte Carlo methods.  相似文献   

15.
The challenge to fruitfully merge state-of-the-art techniques from mathematical finance and numerical analysis has inspired researchers to develop fast deterministic option pricing methods. As a result, highly efficient algorithms to compute option prices in Lévy models by solving partial integro-differential equations have been developed. In order to provide a solid mathematical foundation for these methods, we derive a Feynman–Kac representation of variational solutions to partial integro-differential equations that characterize conditional expectations of functionals of killed time-inhomogeneous Lévy processes. We allow a wide range of underlying stochastic processes, comprising processes with Brownian part as well as a broad class of pure jump processes such as generalized hyperbolic, multivariate normal inverse Gaussian, tempered stable, and \(\alpha\)-semistable Lévy processes. By virtue of our mild regularity assumptions as to the killing rate and the initial condition of the partial integro-differential equation, our results provide a rigorous basis for numerous applications in financial mathematics and in probability theory. We implement a Galerkin scheme to solve the corresponding pricing equation numerically and illustrate the effect of a killing rate.  相似文献   

16.
This paper presents an approximate formula for pricing average options when the underlying asset price is driven by time-changed Lévy processes. Time-changed Lévy processes are attractive to use for a driving factor of underlying prices because the processes provide a flexible framework for generating jumps, capturing stochastic volatility as the random time change, and introducing the leverage effect. There have been very few studies dealing with pricing problems of exotic derivatives on time-changed Lévy processes in contrast to standard European derivatives. Our pricing formula is based on the Gram–Charlier expansion and the key of the formula is to find analytic treatments for computing the moments of the normalized average asset price. In numerical examples, we demonstrate that our formula give accurate values of average call options when adopting Heston’s stochastic volatility model, VG-CIR, and NIG-CIR models.  相似文献   

17.
《Quantitative Finance》2013,13(1):40-50
Time consistency of the models used is an important ingredient to improve risk management. The empirical investigation in this article gives evidence for some models driven by Lévy processes to be highly consistent. This means that they provide a good statistical fit of empirical distributions of returns not only on the timescale used for calibration but on various other timescales as well. As a result these models produce more reliable risk numbers and derivative prices.  相似文献   

18.
General HJM models driven by a Lévy process are considered. Necessary moment conditions for the discounted bond prices to be local martingales are derived. Under these moment conditions, it is proved that the discounted bond prices are local martingales if and only if a generalized HJM condition holds. Research supported in part by Polish KBN Grant P03A 034 29 “Stochastic evolution equations driven by Lévy noise”.  相似文献   

19.
In the context of collective risk theory, we give a sample path identity relating capital injections in the original model and dividend payments in the time-reversed counterpart. We exploit this duality to provide an alternative view on some of the known results on the expected discounted capital injections and dividend payments for risk models driven by spectrally negative Lévy processes. Furthermore, we present a probabilistic analysis and simple resulting expressions for a model with two dividend barriers, which was recently shown by Schmidli to be optimal in various Lévy risk models when maximizing the difference of dividend payments and injections in the presence of tax exemptions.  相似文献   

20.
This paper studies additive subordination, which we show is a useful technique for constructing time-inhomogeneous Markov processes with analytical tractability. This technique is a natural generalization of Bochner’s subordination that has proved to be extremely useful in financial modeling. Probabilistically, Bochner’s subordination corresponds to a stochastic time change with respect to an independent Lévy subordinator, while in additive subordination, the Lévy subordinator is replaced by an additive one. We generalize the classical Phillips theorem for Bochner’s subordination to the additive subordination case, based on which we provide Markov and semimartingale characterizations for a rich class of jump-diffusions and pure jump processes obtained from diffusions through additive subordination, and obtain spectral decomposition for them. To illustrate the usefulness of additive subordination, we develop an analytically tractable cross-commodity model for spread option valuation that is able to calibrate the implied volatility surface of each commodity. Moreover, our model can generate implied correlation patterns that are consistent with market observations and economic intuitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号