首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper discusses the implementation of a two-stage hands-on technology learning activity, based on Dewey’s learning experience theory that is designed to enhance preservice teachers’ primary and secondary experiences in developing their competency to solve hands-on problems that apply science and mathematics concepts. The major conclusions were that: (1) preservice teachers understood the science and mathematics concepts related to the hands-on activity, but they need more help in exploring practical products of applying discipline related concepts for the purpose of stimulating their design ideas; and (2) the two-stage hands-on technology learning activity served as useful prompts in developing preservice teachers’ primary and secondary experiences in applying science and mathematics concepts during the design process. However, it was evident that preservice teachers still needed more training in improving their design ideas by the application of more in-depth related science and mathematics concepts.  相似文献   

2.
Many scholars claimed the integration of science, technology, engineering and mathematics (STEM) education is beneficial to the national economy and teachers and institutes have been working to develop integrated education programs. This study examined a project-based learning (PjBL) activity that integrated STEM using survey and interview methods. The participants were 30 freshmen with engineering related backgrounds from five institutes of technology in Taiwan. Questionnaires and semi-structured interviews were used to examine student attitudes towards STEM before and after the PjBL activity. The results of the survey showed that students’ attitudes to the subject of engineering changed significantly. Most of the students recognized the importance of STEM in the science and engineering disciplines; they mentioned in interview that the possession of professional science knowledge is useful to their future career and that technology may improve our lives and society, making the world a more convenient and efficient place. In conclusion, combining PjBL with STEM can increase effectiveness, generate meaningful learning and influence student attitudes in future career pursuit. Students are positive towards combining PjBL with STEM.  相似文献   

3.
This study was designed to explore the effects of problem-based learning (PBL) strategies on the attitudes of female senior high school students toward integrated knowledge learning in science, technology, engineering, and mathematics (STEM). Content analysis and focus group methods were adopted as the research processes. Data and information about the STEM internet platform, an attitude scale and the contents of interviews were also collected for analysis. The subjects were 10th grade students at a girls’ senior high school who volunteered to organize teams for a Solar Electric Trolley Contest. A total of 40 students were grouped into 18 teams. The results of the study indicate: (1) that PBL strategies can be helpful in enhancing students’ attitudes toward STEM learning and the exploration of future career choices; (2) that the PBL teaching strategy helped to lead students step by step toward completing the contest’s mission and to experience the meaning of integrated STEM knowledge; (3) that not only that students can actively apply engineering and science knowledge, but also that students tend to gain more solid science and mathematics knowledge through STEM learning in PBL; and (4) that PBL can enhance students’ abilities and provide them experiences related to knowledge integration and application. Therefore, it is recommended that the curriculum at the girls’ senior high school include more content related to specialty subjects to enhance their technological capabilities. In addition, a learning mechanism should be offered to aid advisers or teachers in strengthening students’ integrated and systematic knowledge about STEM.  相似文献   

4.
Since technology education is, compared to subjects such as mathematics and science, still a fairly new subject both nationally and internationally, it does not have an established subject philosophy. In the absence of an established subject philosophy for technology education, one can draw on other disciplines in the field, such as engineering and design practice, for insights into technological knowledge. The purpose of this study is to investigate the usefulness of an epistemological conceptual framework chiefly derived from engineering, to be able to describe the nature of technological knowledge, in an attempt to contribute towards the understanding of this relatively new learning area. The conceptual framework was derived mainly from Vincenti’s (What engineers know and how they know it. Johns Hopkins University Press, Baltimore, 1990) categories of knowledge based on his research into historical aeronautic engineering cases. Quantitative research was used to provide insight into the categories of knowledge used by students at the University of Pretoria during capability tasks and included an analysis of a questionnaire administered to these students. Findings suggest that the conceptual framework used here is useful in technology education and that the categories of technological knowledge apply to all the content areas, i.e. structures, systems and control, and processing, in technology education. The study recommends that researchers and educators deepen their understanding of the nature of technological knowledge by considering the categories of technological knowledge presented in the conceptual framework.  相似文献   

5.
Collaborative problem-solving skills are one of the key competencies required in the twenty-first century. In this study, researchers attempted to compare the effectiveness of web-based collaborative problem-solving systems (wCPSS) and classroom-based collaborative hands-on learning activities (cCHLA) in the development of collaborative problem-solving skills in junior high school students who were learning science, technology, engineering, and mathematics (STEM)-related subjects. A quasi-experimental, nonequivalent pretest–posttest control group design was employed, and 241 junior high school students were invited to participate in the study. According to the results, a wCPSS-supported environment with teacher guidance was found to be more effective than either a wCPSS-supported environment without teacher guidance or a cCHLA-facilitated environment in developing students’ collaborative problem-solving skills in STEM fields. The study suggested that a web-based collaborative problem-solving system with teacher guidance can be used in developing junior high students’ collaborative problem-solving skills in STEM education.  相似文献   

6.
Teaching science through designing technology   总被引:1,自引:0,他引:1  
This paper is a review of the literature related to teaching science through designing technology. The premise of this method is that designing technology presents the students with the context through which they can apply the science concepts they learned and thus enhancing their understanding of these concepts. Despite the promise of this method, teachers attempting it were faced by many challenges such as: (1) teachers did not have a grasp of the complex relationship between science and technology and assumed that technology was simply applied science, (2) the students were not able to transfer their learning of science to designing technology, (3) teachers did not have a deep understanding of the design process and tried to teach it as a linear, context-free process without regard to the context of the problem. The purpose of this paper is to extract from the literature a better understanding of teaching science through designing technology and the elements that teachers need to satisfy in order to increase their chances of successfully implementing this method in the classroom.  相似文献   

7.
This study was conducted with the aim of creating a new introductory course emphasizing the development of technological literacy for elementary school pre-service teachers. This study also aimed to investigate elementary school pre-service teachers’ attitudinal transition toward elementary school technology education (ESTE) and its implementation. An introductory ESTE program within Practical Arts Education was developed through a procedure consisting of preparation, development, and improvement. The program was implemented among 127 elementary school pre-service teachers for 7 weeks in South Korea. The learning contents based on the ESTE research and national curriculum included (1) technology learning units in the Practical Arts textbooks, (2) technology and invention, (3) drawing and design, (4) wood products, (5) basic electricity and electronics, and (6) integrative science, technology, engineering, and mathematics/science, technology, engineering, arts, and mathematics education. These contents were delivered via an instructor’s lecture, hands-on activities on technological design, and cooperative learning. A pre- and post-test on the study participants’ attitudes toward ESTE and on their knowledge, competency, and anxiety in relation to the six learning contents were conducted. The research results indicated a stable improvement in the study participants’ attitudes toward ESTE, their level of knowledge about ESTE, and their competency to teach ESTE. The developed program also decreased their anxiety in relation to teaching ESTE. The study findings may provide useful insights into the professional development of elementary school teachers in connection with ESTE, and into the implementation of technology education in the elementary school setting.  相似文献   

8.
9.
This article examines the effect of scientific detective video as a vehicle to support the design of technology activities by technology teachers. Ten graduate students, including current and future technology teachers, participated in a required technology graduate course that used scientific detective videos as a pedagogical tool to motivate their interest in science and technology and to reinforce creative competence in designing technology learning activities (TLAs). The participants watched three scientific detective videos and analyzed them for scientific principles and technologies. An analysis report and interview were conducted to collect participants’ understanding and application of scientific principles and technologies. The main findings were that (a) influencing teacher’s design of TLAs through scientific detective videos is feasible; (b) prior personal conditions and external factors influence teacher’s design of TLAs; and (c) the analysis of scientific detective videos helps teachers to design TLAs appropriately. This study demonstrated the broad utility of scientific detective videos for inspiring technology teachers to integrate science and technology in their activity design.  相似文献   

10.
Integrating engineering and technology concepts into K-12 science and math curricula through engineering design project-based learning has been found to increase students’ interest in science, technology, engineering, and mathematics (STEM), however preparing teachers to shift to interdisciplinary teaching remains a significant challenge. Primarily teachers need to develop both skills and attitudes toward interdisciplinary teaching. In doing so, professional development (PD) is considered a key component in helping teachers through this transformation process. In an educational environment of accountability, measuring the effects of PD programs on teacher behaviors and capacity is essential but often elusive. The current study describes the change in attitudes to interdisciplinary teaching of 29 self-selected middle and high school teachers who participated a PD workshop and in delivering a 12–15 week interdisciplinary teaching and design problem unit that spanned multiple STEM subjects. This quasi-experimental pilot study implemented a single group pretest–posttest design using survey methods to collect data from the participants at two intervals; at the time of the PD workshop and at the completion of the teaching unit that emphasized a long-term engineering design problem. The goals of this research are to (1) assess the changes in attitudes to interdisciplinary teaching, attitudes to teamwork, teaching satisfaction, and resistance to change, (2) explore relationships among these changes, (3) and describe the variation in these changes across teachers’ gender, school level, discipline taught, and education level.  相似文献   

11.
Making the connection between science and technology might be important for students to learn to identify and solve problems and to acquire scientific knowledge and skills. The research reported in this article concerned the development of a design situation in a science classroom and the study of students performing in this situation. More specifically, the setting involved students’ design of a measurement procedure as a way of attaining understanding of the underlying scientific concepts. In fact, at higher secondary level, the classical experimental procedure of measuring facial angle is employed within the topic of human evolution to find out to which species a given human cranium belongs. At the same time, designing a procedure, instead of just executing it, is thought to entail higher odds for attaining teleological understanding. The development of the learning situation involved pursuing parallels between the expert design task as described in the literature and the assignment given to students. We proceeded through step-wise development of the learning situation that was successively tested out in the classroom. Our analysis of the student-devised procedures revealed three issues regarding the graphical representation of angles, the reproducibility of the points and the communicational demands of the situation. Students used both prior knowledge (e.g. about evolution), and new knowledge about cranium anatomy and angles. They also exhibited new experimental skills like anticipating each experimental action. Such cognitive tasks which are at the origin of students’ activity make the situation approximate the goals of laboratory work by distancing it from the simple execution of a series of steps. Future research could be directed towards further exploring the benefits of an approach that combines essential characteristics of science and technology.  相似文献   

12.
As we have noticed from our own classroom experiences, children often find it difficult to identify the adequate operations learned in mathematics class when they are solving mechanical-operators problems in Technology class. We wanted to design a project that exploits the idea of a hands-on relationship between mathematics and technology to teach students the concept of ‘transmission coefficient’ in schools. Our purpose was to bridge mathematical knowledge and mechanical parts in technological devices. Our belief was that visual-tangible representations enhance human cognition by scaffolding the information process. We supplied a kit with rubber foam (Fomi) and balsa wood parts to construct an analogical clock. This included a series of gears to work with three different ratios. The project was conducted in 2007 and 2008, with 38 students ranging from 10 to 14 years of age. The students were from the 5th and 7th grades in two different schools. The project included six stages of both theory and hands-on work. In a final stage, the students were given a written test. All students were able to make workable systems of their design for a time-measuring device. This proved important for technological education. On the other hand, manipulating gears along with visual reasoning strategies allowed all students to achieve an understanding of operations with fractions. We think this is a major achievement in mathematical education.  相似文献   

13.
Recent publications have elevated the priority of increasing the integration of Science, Technology, Engineering, and Mathematics (STEM) content for K-12 education. The STEM education community must invest in the development of valid and reliable to scales to measure STEM content, knowledge fusion, and perceptions of the nature of STEM. This brief report discusses the development of an instrument to measure student perceptions of the interdependent nature of STEM content knowledge in the context of a complex classroom intervention implemented in five Colorado high schools (N = 275). Specifically, cross-functional science, technology, engineering, and mathematics teams of high school students were formed to complete engineering design problems. Exploratory (pretest) and confirmatory (posttest) factor analyses indicated that a newly adapted scale to measure student perceptions of the interdependent nature of STEM content knowledge had possessed adequate model fit. Furthermore, analysis revealed a novel pattern of results for the intervention. Specifically, students with initially high perceptions of the interdependent nature of STEM sustained their high perceptions at posttest; however, students with initially low perceptions exhibited statistically significantly positive gains from pretest to posttest. Therefore, this intervention may work best with students who are at risk of losing interest in STEM disciplines. The implications of these research findings are discussed.  相似文献   

14.
Issues of Learning and Knowledge in Technology Education   总被引:1,自引:0,他引:1  
This article examines issues that arise from learning and knowledge in technology education. The issues examined are, first, the definition of technological knowledge and what the nature of that knowledge should be, where the concern is with how we define and think about that knowledge, especially in the context of how students learn and use knowledge in technology education. Second, the relationship between learning and knowledge in particular the inter-relationship between learning and knowledge, focusing on a situated view of learning. The third issue sees learning related to the context within which the learning takes place.This paper will explore these three inter-related issues in four sections. First, an outline of a view of learning that privileges context. Second, there will be a consideration of types of knowledge, namely, procedural and conceptual knowledge. These two types will be elaborated upon through research done at the Open University, particularly on problem solving and design. In discussing conceptual knowledge empirical work in mathematics and science education will be drawn on, along with work on the use of mathematics and science in technology education. Third, it will be argued that qualitative knowledge should become a part of teaching and learning in technology education because it both reflects a view of knowledge stemming from situated learning, and the tasks of technology. The article will end with a research agenda for what we have yet to understand, drawing on the earlier arguments.  相似文献   

15.
16.
A diverse group of 20 high school students from four states in the US were individually provided with an engineering design challenge. Students chosen were in capstone engineering courses and had taken multiple engineering courses. As students considered the problem and developed a solution, observational data were recorded and artifacts collected. Quantitative methods were used to identify how students allocated their time across different types of modeling. Qualitative methods were used to review data from three students who spent substantial time engaged in graphical and two kinds of mathematical modeling. These students were profiled and their patterns of modeling are represented visually and described in context. Much of the modeling done by these 20 students was graphical in nature. Few students informed their thinking with mathematical representations, yet predictive mathematical modeling is essential to engineering design. Implications for the classroom include encouraging students to transfer understanding of science and mathematics into technology and engineering contexts through modeling.  相似文献   

17.
Rapid social change creates a powerful challenge to individuals and educational institutions. Technology education is not an exception. To be a useful and authentic learning area, technology education should constantly re-examine its rationale in order to formulate responses to changing contexts to improve the quality of learning for students. The more perspectives used for this process, the better the results should be. This article explores several facets of social change that can influence an understanding of the aims and nature of technology education and that might contribute to its development. Social change is a very complex and dynamic phenomenon that can be considered from a variety of perspectives and is reflected in a number of processes. These processes are different in different types of societies. In relation to the topic, the following processes that are relevant to Western societies (it is acknowledged that for different type of societies, e.g. Islamic, Chinese, social context will be different) will be analyzed: (1) The shift of emphasis from engaging society members primarily as producers to engaging society members primarily as consumers; (2) The colonisation of the cognitive and moral spheres of human life by the aesthetic sphere; (3) The integration of people into the technological world and (4) The shift from the Welfare state to the Competition state. These processes have been identified on the basis of their potential influences on the development of technology education and, as a consequence, the students who study it. These processes are in tension which creates even greater challenges to technology education. Several implications of the above analysis in terms of conceptualizing technology education are discussed. It is suggested that social change can be addressed through technology education if the educational goals of it are ‘to broaden minds and develop all pupils in the creation of a better society’. For technology education classrooms, these specifically mean the involvement of students in democratic debates on the future outlines of technological development; development of their social and ecological sensitivities; avoiding orienting their solutions exclusively to the standard of business efficiency and profitability criteria; helping them to distinguish real needs from desires; discussing the role of designed objects in the life of contemporary society; putting more emphasis on other than the aesthetic aspects of life that can provide existential meaning for people; challenging the way people are manipulated through advertising and cultivation of their desires; developing an active/creative attitude towards problems (not re-active); teaching students to formulate problems (not only being involved in problem solving); challenging consumer-oriented design; looking at design as one source of inspiration, not as a source of economic utility; and developing social responsibility  相似文献   

18.
The mathematical requirements for engineering, science and technology students has been debated for many years and concern has been expressed about the mathematical preparedness of students entering higher education. This paper considers a mathematics course that has been specifically designed to address some of these issues for technology education students. It briefly chronicles the changes that have taken place over its lifetime and evaluates the introduction of Computer Assisted Assessment (CAA) into a course already being delivered using Computer Aided Learning (CAL). Benefits of CAA can be categorised into four main areas. 1. Educational – achieved by setting short, topic related, assessments, each of which has to be passed, thereby increasing curriculum coverage. 2. Students – by allowing them to complete assessments at their own pace removing the stress of the final examination. 3. Financial – increased income to the institution, by broadening access to the course. Improved retention rate due to self-paced learning. 4. Time – staff no longer required to set and mark exams. Most students preferred this method of assessment to traditional exams, because it increased confidence and reduced stress levels. Self-paced working, however, resulted in a minority of students not completing the tests by the deadline. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Cultivating students’ design abilities can be highly beneficial for the learning of science, technology, engineering, and mathematics (STEM) concepts, and development of higher-order thinking capabilities (National Academy of Engineering and National Research Council in STEM integration in k-12 education: status, prospects, and an agenda for research, The National Academies Press, Washington, 2014). Therefore, examining students’ strategies, how they distribute their cognitive effort, and confront STEM concepts during design experiences, can help educators identify effective and developmentally appropriate methods for teaching and scaffolding design activities for students (National Research Council in standards for k-12 engineering education? The National Academies Press, Washington, 2010). Yet, educational researchers have only recently begun examining students’ engineering design cognition at the P-12 level, despite reports such as Standards for K-12 Engineering Education? (National Research Council 2010) designating this area of research as lackluster. Of the recent studies that have investigated engineering design cognition at the P-12 level, the primary method of investigation has been verbal protocol analysis using a think-aloud method (Grubbs in further characterization of high school pre- and non-engineering students’ cognitive activity during engineering design, 2016). This methodology captures participants’ verbalization of their thought process as they solve a design challenge. Analysis is typically conducted by applying a pre-determined coding scheme, or one that emerges, to determine the distribution of a group’s or an individual’s cognition. Consequently, researchers have employed a variety of coding schemes to examine and describe students’ design cognition. Given the steady increase of explorations into connections between P-12 engineering design cognition and development of student cognitive competencies, it becomes increasingly important to understand and choose the most appropriate coding schemes available, as each has its own intent and characteristics. Therefore, this article presents an examination of recent P-12 design cognition coding schemes with the purpose of providing a background for selecting and applying a scheme for a specific outcome, which can better enable the synthesis and comparison of findings across studies. Ultimately, the aim is to aid others in choosing an appropriate coding scheme, with cognizance of research analysis intent and characteristics of research design, while improving the intentional scaffolding and support of design challenges.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号