首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Quantitative Finance》2013,13(6):442-450
Abstract

This paper describes a two-factor model for a diversified market index using the growth optimal portfolio with a stochastic and possibly correlated intrinsic timescale. The index is modelled using a time transformed squared Bessel process with a log-normal scaling factor for the time transformation. A consistent pricing and hedging framework is established by using the benchmark approach. Here the numeraire is taken to be the growth optimal portfolio. Benchmarked traded prices appear as conditional expectations of future benchmarked prices under the real world probability measure. The proposed minimal market model with log-normal scaling produces the type of implied volatility term structures for European call and put options typically observed in real markets. In addition, the prices of binary options and their deviations from corresponding Black–Scholes prices are examined.  相似文献   

2.
3.
This paper compares the performance of Black–Scholes with an artificial neural network (ANN) in pricing European‐style call options on the FTSE 100 index. It is the first extensive study of the performance of ANNs in pricing UK options, and the first to allow for dividends in the closed‐form model. For out‐of‐the‐money options, the ANN is clearly superior to Black–Scholes. For in‐the‐money options, if the sample space is restricted by excluding deep in‐the‐money and long maturity options (3.4% of total volume), then the performance of the ANN is comparable to that of Black–Scholes. The superiority of the ANN is a surprising result, given that European‐style equity options are the home ground of Black–Scholes, and suggests that ANNs may have an important role to play in pricing other options for which there is either no closed‐form model, or the closed‐form model is less successful than is Black–Scholes for equity options. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

The volatility smile and systematic mispricing of the Black–Scholes option pricing model are the typical motivation for examining stochastic processes other than geometric Brownian motion to describe the underlying stock price. In this paper a new stochastic process is presented, which is a special case of the skew-Brownian motion of Itô and McKean. The process in question is the sum of a standard Brownian motion and an independent reflecting Brownian motion that is similar in construction to the stochastic representation of a skew-normal random variable. This stochastic process is taken in its exponential form to price European options. The derived option price nests the Black–Scholes equation as a special case and is flexible enough to accommodate stochastic volatility as well as stochastic skewness.  相似文献   

5.
In this paper, we propose a methodology for pricing basket options in the multivariate Variance Gamma model introduced in Luciano and Schoutens [Quant. Finance 6(5), 385–402]. The stock prices composing the basket are modelled by time-changed geometric Brownian motions with a common Gamma subordinator. Using the additivity property of comonotonic stop-loss premiums together with Gauss-Laguerre polynomials, we express the basket option price as a linear combination of Black & Scholes prices. Furthermore, our new basket option pricing formula enables us to calibrate the multivariate VG model in a fast way. As an illustration, we show that even in the constrained situation where the pairwise correlations between the Brownian motions are assumed to be equal, the multivariate VG model can closely match the observed Dow Jones index options.  相似文献   

6.
The QLBS model is a discrete-time option hedging and pricing model that is based on Dynamic Programming (DP) and Reinforcement Learning (RL). It combines the famous Q-Learning method for RL with the Black–Scholes (–Merton) (BSM) model's idea of reducing the problem of option pricing and hedging to the problem of optimal rebalancing of a dynamic replicating portfolio for the option, which is made of a stock and cash. Here we expand on several NuQLear (Numerical Q-Learning) topics with the QLBS model. First, we investigate the performance of Fitted Q Iteration for an RL (data-driven) solution to the model, and benchmark it versus a DP (model-based) solution, as well as versus the BSM model. Second, we develop an Inverse Reinforcement Learning (IRL) setting for the model, where we only observe prices and actions (re-hedges) taken by a trader, but not rewards. Third, we outline how the QLBS model can be used for pricing portfolios of options, rather than a single option in isolation, thus providing its own, data-driven and model-independent solution to the (in)famous volatility smile problem of the Black–Scholes model.  相似文献   

7.
Financial models with stochastic volatility or jumps play a critical role as alternative option pricing models for the classical Black–Scholes model, which have the ability to fit different market volatility structures. Recently, machine learning models have elicited considerable attention from researchers because of their improved prediction accuracy in pricing financial derivatives. We propose a generative Bayesian learning model that incorporates a prior reflecting a risk-neutral pricing structure to provide fair prices for the deep ITM and the deep OTM options that are rarely traded. We conduct a comprehensive empirical study to compare classical financial option models with machine learning models in terms of model estimation and prediction using S&P 100 American put options from 2003 to 2012. Results indicate that machine learning models demonstrate better prediction performance than the classical financial option models. Especially, we observe that the generative Bayesian neural network model demonstrates the best overall prediction performance.  相似文献   

8.
A three parameter stochastic process, termed the variance gammaprocess, that generalizes Brownian motion is developed as amodel for the dynamics of log stock prices. Theprocess is obtainedby evaluating Brownian motion with drift at a random time givenby a gamma process. The two additional parameters are the driftof the Brownian motion and the volatility of the time change.These additional parameters provide control over the skewnessand kurtosis of the return distribution. Closed forms are obtainedfor the return density and the prices of European options.Thestatistical and risk neutral densities are estimated for dataon the S&P500 Index and the prices of options on this Index.It is observed that the statistical density is symmetric withsome kurtosis, while the risk neutral density is negativelyskewed with a larger kurtosis. The additional parameters alsocorrect for pricing biases of the Black Scholes model that isa parametric special case of the option pricing model developedhere.  相似文献   

9.
The paper investigates the validity of versions of discrete-time stochastic volatility models for index series known to contain component stocks exhibiting non-synchronous trading. The efficient method of moments (EMM) is used to fit versions of the discrete-time stochastic volatility (SV) model. The EMM methodology confronts moment conditions generated by a score generator (SNP) that are valid by construction. The moment generator suggests non-linearity in the index series. The EMM construction shows that a classical discrete time stochastic volatility model is rejected. An extended model incorporating an asymmetric volatility specification validates all the moment scores. Option values from Black and Scholes (BS) and Monte Carlo simulations (MC) seem significantly different. The results suggest that BS does not price asymmetry adequately. Asymmetry suggests increased market risk inducing higher BS call prices and lower (higher) BS put pricing for ATM and OTM options (ITM) relative to MC.  相似文献   

10.
The Variance Gamma Process and Option Pricing   总被引:21,自引:0,他引:21  
A three parameter stochastic process, termed the variance gamma process, that generalizes Brownian motion is developed as a model for the dynamics of log stock prices. The process is obtained by evaluating Brownian motion with drift at a random time given by a gamma process. The two additional parameters are the drift of the Brownian motion and the volatility of the time change. These additional parameters provide control over the skewness and kurtosis of the return distribution. Closed forms are obtained for the return density and the prices of European options. The statistical and risk neutral densities are estimated for data on the S & P500 Index and the prices of options on this Index. It is observed that the statistical density is symmetric with some kurtosis, while the risk neutral density is negatively skewed with a larger kurtosis. The additional parameters also correct for pricing biases of the Black Scholes model that is a parametric special case of the option pricing model developed here.  相似文献   

11.
In this paper, we propose a new measure of Greek equity market volatility based on the prices of FTSE/ATHEX-20 index options. Greek Implied Volatility Index is calculated using the model-free methodology that involves option prices summations and is independent from the Black and Scholes pricing formula. The specific method is applied for the first time in a peripheral and illiquid market as the Athens Exchange.The empirical findings of this paper show that the proposed volatility index includes information about future realized volatility beyond that contained in past volatility. In addition, our analysis indicates that there is a statistically significant negative and asymmetric contemporaneous relationship between the returns of the implied volatility index and the underlying equity index. Finally, the volatility transmission effects on the Greek stock exchange from two leading markets, namely the New York Stock Exchange and the Deutsche Börse, are tested and documented.  相似文献   

12.
In this paper we study the pricing and hedging of options on realized variance in the 3/2 non-affine stochastic volatility model by developing efficient transform-based pricing methods. This non-affine model gives prices of options on realized variance that allow upward-sloping implied volatility of variance smiles. Heston's model [Rev. Financial Stud., 1993, 6, 327–343], the benchmark affine stochastic volatility model, leads to downward-sloping volatility of variance smiles—in disagreement with variance markets in practice. Using control variates, we propose a robust method to express the Laplace transform of the variance call function in terms of the Laplace transform of the realized variance. The proposed method works in any model where the Laplace transform of realized variance is available in closed form. Additionally, we apply a new numerical Laplace inversion algorithm that gives fast and accurate prices for options on realized variance, simultaneously at a sequence of variance strikes. The method is also used to derive hedge ratios for options on variance with respect to variance swaps.  相似文献   

13.
Recent variable annuities offer participation in the equity market and attractive protection against downside movements. Accurately quantifying this additional equity market risk and robustly hedging options embedded in the guarantees of variable annuities are new challenges for insurance companies. Due to sensitivities of the benefits to tails of the account value distribution, a simple Black–Scholes model is inadequate in preventing excessive liabilities. A model which realistically describes the real world price dynamics over a long time horizon is essential for the risk management of the variable annuities. In this article, both jump risk and volatility risk are considered for risk management of lookback options embedded in guarantees with a ratchet feature. We evaluate relative performances of delta hedging and dynamic discrete risk minimization hedging strategies. Using the underlying as the hedging instrument, we show that, under a Black–Scholes model, local risk minimization hedging can be significantly better than delta hedging. In addition, we compare risk minimization hedging using the underlying with that of using standard options. We demonstrate that, under a Merton's jump diffusion model, hedging using standard options is superior to hedging using the underlying in terms of the risk reduction. Finally, we consider a market model for volatility risks in which the at‐the‐money implied volatility is a state variable. We compute risk minimization hedging by modeling at‐the‐money Black–Scholes implied volatility explicitly; the hedging effectiveness is evaluated, however, under a joint model for the underlying price and implied volatility. Our computational results suggest that, when implied volatility risk is suitably modeled, risk minimization hedging using standard options, compared to hedging using the underlying, can potentially be more effective in risk reduction under both jump and volatility risks.  相似文献   

14.
The Homoscedastic Gamma (HG) model characterizes the distribution of returns by its mean, variance and an independent skewness parameter. The HG model preserves the parsimony and the closed form of the Black–Scholes–Merton (BSM) while introducing the implied volatility (IV) and skewness surface. Varying the skewness parameter of the HG model can restore the symmetry of IV curves. Practitioner’s variants of the HG model improve pricing (in-sample and out-of-sample) and hedging performances relative to practitioners’ BSM models, with as many or less parameters. The pattern of improvements in Delta-Hedged gains across strike prices accord with predictions from the HG model. These results imply that expanding around the Gaussian density does not offer sufficient flexibility to match the skewness implicit in options. Consistent with the model, we also find that conditioning on implied skewness increases the predictive power of the volatility spread for excess returns.  相似文献   

15.
In this paper we compare the out-of-sample performance of two common extensions of the Black–Scholes option pricing model, namely GARCH and stochastic volatility (SV). We calibrate the three models to intraday FTSE 100 option prices and apply two sets of performance criteria, namely out-of-sample valuation errors and Value-at-Risk (VaR) oriented measures. When we analyze the fit to observed prices, GARCH clearly dominates both SV and the benchmark Black–Scholes model. However, the predictions of the market risk from hypothetical derivative positions show sizable errors. The fit to the realized profits and losses is poor and there are no notable differences between the models. Overall, we therefore observe that the more complex option pricing models can improve on the Black–Scholes methodology only for the purpose of pricing, but not for the VaR forecasts.  相似文献   

16.
If the volatility is stochastic, stock price returns and European option prices depend on the time average of the variance, i.e. the integrated variance, not on the path of the volatility. Applying a Bayesian statistical approach, we compute a forward-looking estimate of this variance, an option-implied integrated variance. Simultaneously, we obtain estimates of the correlation coefficient between stock price and volatility shocks, and of the parameters of the volatility process. Due to the convexity of the Black–Scholes formula with respect to the volatility, pricing and hedging with Black–Scholes-type formulas and the implied volatility often lead to inaccuracies if the volatility is stochastic. Theoretically, this problem can be avoided by using Hull–White-type option pricing and hedging formulas and the integrated variance. We use the implied integrated variance and Hull–White-type formulas to hedge European options and certain volatility derivatives.  相似文献   

17.
The short-lived arbitrage model has been shown to significantly improve in-sample option pricing fit relative to the Black–Scholes model. Motivated by this model, we imply both volatility and virtual interest rates to adjust minimum variance hedge ratios. Using several error metrics, we find that the hedging model significantly outperforms the traditional delta hedge and a current benchmark hedge based on the practitioner Black–Scholes model. Our applications include hedges of index options, individual stock options and commodity futures options. Hedges on gold and silver are especially sensitive to virtual interest rates.  相似文献   

18.
This paper develops a new approach to obtain the price and risk sensitivities of basket options which have a volatility smile. Using this approach, the Black–Scholes model and the Stochastic Volatility Inspired model have been used to obtain an approximate analytical pricing formula for basket options with a volatility smile. It is found that our approximate formula is quite accurate by comparing it with Monte Carlo simulations. It is also proved the option value of our approach is consistent with the option value generated by Levy’s and Gentle’s approaches for typical ranges of volatility. Further, we give a theoretical proof that the option values from Levy’s and Gentle’s works are the upper bound and the lower bound, respectively, for our option value. The calibration procedure and a practical example are provided. The main advantage of our approach is that it provides accurate and easily implemented basket option prices with volatility smile and hedge parameters and avoids the need to use time-consuming numerical procedures such as Monte Carlo simulation.  相似文献   

19.
The paper reports empirical tests of the beta model for pricing fixed-income options. The beta model resembles the Black–Scholes model with the lognormal probability distribution replaced by a beta probability distribution. The test is based on 32 817 daily prices of Eurodollar futures options and concludes that the beta model is more accurate than alternative option pricing models.  相似文献   

20.
In pricing primary-market options and in making secondary markets, financial intermediaries depend on the quality of forecasts of the variance of the underlying assets. Hence, pricing of options provides the appropriate test of forecasts of asset volatility. NYSE index returns over the period of 1968–1991 suggest that pricing index options of up to 90-days maturity would be more accurate when: (1) using ARCH specifications in place of a moving average of squared returns; (2) using Hull and White's (1987) adjustment for stochastic variance in the Black and Scholes formula; (3) accounting explicitly for weekends and the slowdown of variance whenever the market is closed. (JEL C22, C53, C10, G11, G12)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号