首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 495 毫秒
1.
In this paper we compare the out-of-sample performance of two common extensions of the Black–Scholes option pricing model, namely GARCH and stochastic volatility (SV). We calibrate the three models to intraday FTSE 100 option prices and apply two sets of performance criteria, namely out-of-sample valuation errors and Value-at-Risk (VaR) oriented measures. When we analyze the fit to observed prices, GARCH clearly dominates both SV and the benchmark Black–Scholes model. However, the predictions of the market risk from hypothetical derivative positions show sizable errors. The fit to the realized profits and losses is poor and there are no notable differences between the models. Overall, we therefore observe that the more complex option pricing models can improve on the Black–Scholes methodology only for the purpose of pricing, but not for the VaR forecasts.  相似文献   

2.
This paper empirically examines the performance of Black-Scholes and Garch-M call option pricing models using call options data for British Pounds, Swiss Francs and Japanese Yen. The daily exchange rates exhibit an overwhelming presence of volatility clustering, suggesting that a richer model with ARCH/GARCH effects might have a better fit with actual prices. We perform dominant tests and calculate average percent mean squared errors of model prices. Our findings indicate that the Black-Scholes model outperforms the GARCH models. An implication of this result is that participants in the currency call options market do not seem to price volatility clusters in the underlying process.  相似文献   

3.
This paper introduces a class of multivariate GARCH models that extends the existing literature by explicitly modeling correlation dependent pricing kernels. A large subclass admits closed-form recursive solutions for the moment generating function under the risk-neutral measure, which permits efficient pricing of multi-asset options. We perform a full calibration to three bivariate series of index returns and their corresponding volatility indexes in a joint maximum likelihood estimation. The results empirically confirm the presence of correlation dependance in addition to the well known variance dependance in the pricing kernel. The model improves both the overall likelihood and the VIX-implied likelihoods, with a better fitting of marginal distributions, e.g., 15% less error on one-asset option prices. The new degree of freedom is also shown to significantly impact the shape of marginal and joint pricing kernels, and leads to up to 53% differences for out-of-the-money two-asset correlation option prices.  相似文献   

4.
This paper investigates the pricing of Nikkei 225 Options using the Markov Switching GARCH (MSGARCH) model, and examines its practical usefulness in option markets. We assume that investors are risk-neutral and then compute option prices by using Monte Carlo simulation. The results reveal that, for call options, the MSGARCH model with Student’s t-distribution gives more accurate pricing results than GARCH models and the Black–Scholes model. However, this model does not have good performance for put options.  相似文献   

5.
Stochastic volatility (SV) models are theoretically more attractive than the GARCH type of models as it allows additional randomness. The classical SV models deduce a continuous probability distribution for volatility so that it does not admit a computable likelihood function. The estimation requires the use of Bayesian approach. A recent approach considers discrete stochastic autoregressive volatility models for a bounded and tractable likelihood function. Hence, a maximum likelihood estimation can be achieved. This paper proposes a general approach to link SV models under the physical probability measure, both continuous and discrete types, to their processes under a martingale measure. Doing so enables us to deduce the close-form expression for the VIX forecast for the both SV models and GARCH type models. We then carry out an empirical study to compare the performances of the continuous and discrete SV models using GARCH models as benchmark models.  相似文献   

6.
Recent empirical studies have shown that GARCH models can be successfully used to describe option prices. Pricing such contracts requires knowledge of the risk neutral cumulative return distribution. Since the analytical forms of these distributions are generally unknown, computationally intensive numerical schemes are required for pricing to proceed. Heston and Nandi (2000) consider a particular GARCH structure that permits analytical solutions for pricing European options and they provide empirical support for their model. The analytical tractability comes at a potential cost of realism in the underlying GARCH dynamics. In particular, their model falls in the affine family, whereas most GARCH models that have been examined fall in the non-affine family. This article takes a closer look at this model with the objective of establishing whether there is a cost to restricting focus to models in the affine family. We confirm Heston and Nandi's findings, namely that their model can explain a significant portion of the volatility smile. However, we show that a simple non affine NGARCH option model is superior in removing biases from pricing residuals for all moneyness and maturity categories especially for out-the-money contracts. The implications of this finding are examined. JEL Classification G13  相似文献   

7.
8.
Model risk causes significant losses in financial derivative pricing and hedging. Investors may undertake relatively risky investments due to insufficient hedging or overpaying implied by flawed models. The GARCH model with normal innovations (GARCH-normal) has been adopted to depict the dynamics of the returns in many applications. The implied GARCH-normal model is the one minimizing the mean square error between the market option values and the GARCH-normal option prices. In this study, we investigate the model risk of the implied GARCH-normal model fitted to conditional leptokurtic returns, an important feature of financial data. The risk-neutral GARCH model with conditional leptokurtic innovations is derived by the extended Girsanov principle. The option prices and hedging positions of the conditional leptokurtic GARCH models are obtained by extending the dynamic semiparametric approach of Huang and Guo [Statist. Sin., 2009, 19, 1037–1054]. In the simulation study we find significant model risk of the implied GARCH-normal model in pricing and hedging barrier and lookback options when the underlying dynamics follow a GARCH-t model.  相似文献   

9.
《Quantitative Finance》2013,13(2):116-132
Abstract

This paper develops a family of option pricing models when the underlying stock price dynamic is modelled by a regime switching process in which prices remain in one volatility regime for a random amount of time before switching over into a new regime. Our family includes the regime switching models of Hamilton (Hamilton J 1989 Econometrica 57 357–84), in which volatility influences returns. In addition, our models allow for feedback effects from returns to volatilities. Our family also includes GARCH option models as a special limiting case. Our models are more general than GARCH models in that our variance updating schemes do not only depend on levels of volatility and asset innovations, but also allow for a second factor that is orthogonal to asset innovations. The underlying processes in our family capture the asymmetric response of volatility to good and bad news and thus permit negative (or positive) correlation between returns and volatility. We provide the theory for pricing options under such processes, present an analytical solution for the special case where returns provide no feedback to volatility levels, and develop an efficient algorithm for the computation of American option prices for the general case.  相似文献   

10.
Ritchken and Trevor (1999) proposed a lattice approach for pricing American options under discrete time-varying volatility GARCH frameworks. Even though the lattice approach worked well for the pricing of the GARCH options, it was inappropriate when the option price was computed on the lattice using standard backward recursive procedures, even if the concepts of Cakici and Topyan (2000) were incorporated. This paper shows how to correct the deficiency and that with our adjustment, the lattice method performs properly for option pricing under the GARCH process. JEL Classification: C10, C32, C51, F37, G12  相似文献   

11.
This paper presents a comparison of the Black-Scholes and Kassouf models for the pricing of options. Graphical presentations of simulated call option prices show the effects of changing the different variables on the prices of options. An empirical study using observed option prices shows that there is little practical difference between the values given by the two models, and that an investment strategy based upon using either of the two models would yield about the same return.  相似文献   

12.
When managers get to trade in options received as compensation, their trading prices reveal several aspects of subjective option pricing and risk preferences. Two subjective pricing models are fitted to show that executive stock option prices incorporate a subjective discount. It depends positively on implied volatility and negatively on option moneyness. Further, risk preferences are estimated using the semiparametric model of Aït-Sahalia and Lo (2000). The results suggest that relative risk aversion is just above 1 for a certain stock price range. This level of risk aversion is low but reasonable, and it may be explained by the typical manager being wealthy and having low marginal utility. Related to risk aversion, it is found that marginal rate of substitution increases considerably in states with low stock prices.  相似文献   

13.
We use equity index options to quantify the distribution of consumption growth disasters. The challenge lies in connecting the risk‐neutral distribution of equity returns implied by options to the true distribution of consumption growth. First, we compare pricing kernels constructed from macro‐finance and option‐pricing models. Second, we compare option prices derived from a macro‐finance model to those we observe. Third, we compare the distribution of consumption growth derived from option prices using a macro‐finance model to estimates based on macroeconomic data. All three perspectives suggest that options imply smaller probabilities of extreme outcomes than have been estimated from macroeconomic data.  相似文献   

14.
An issue in the pricing of contingent claims is whether to account for consumption risk. This is relevant for contingent claims on stock indices, such as the FTSE 100 share price index, as investor’s desire for smooth consumption is often used to explain risk premiums on stock market portfolios, but is not used to explain risk premiums on contingent claims themselves. This paper addresses this fundamental question by allowing for consumption in an economy to be correlated with returns. Daily data on the FTSE 100 share price index are used to compare three option pricing models: the Black–Scholes option pricing model, a GARCH (1, 1) model priced under a risk-neutral framework, and a GARCH (1, 1) model priced under systematic consumption risk. The findings are that accounting for systematic consumption risk only provides improved accuracy for in-the-money call options. When the correlation between consumption and returns increases, the model that accounts for consumption risk will produce lower call option prices than observed prices for in-the-money call options. These results combined imply that the potential consumption-related premium in the market for contingent claims is constant in the case of FTSE 100 index options.  相似文献   

15.
We examine valuation procedures that can be applied to incorporate options in scenario-based portfolio optimization models. Stochastic programming models use discrete scenarios to represent the stochastic evolution of asset prices. At issue is the adoption of suitable procedures to price options on the basis of the postulated discrete distributions of asset prices so as to ensure internally consistent portfolio optimization models. We adapt and implement two methods to price European options in accordance with discrete distributions represented by scenario trees and assess their performance with numerical tests. We consider features of option prices that are observed in practice. We find that asymmetries and/or leptokurtic features in the distribution of the underlying materially affect option prices; we quantify the impact of higher moments (skewness and excess kurtosis) on option prices. We demonstrate through empirical tests using market prices of the S&P500 stock index and options on the index that the proposed procedures consistently approximate the observed prices of options under different market regimes, especially for deep out-of-the-money options.  相似文献   

16.
We treat the problem of option pricing under a stochastic volatility model that exhibits long-range dependence. We model the price process as a Geometric Brownian Motion with volatility evolving as a fractional Ornstein–Uhlenbeck process. We assume that the model has long-memory, thus the memory parameter H in the volatility is greater than 0.5. Although the price process evolves in continuous time, the reality is that observations can only be collected in discrete time. Using historical stock price information we adapt an interacting particle stochastic filtering algorithm to estimate the stochastic volatility empirical distribution. In order to deal with the pricing problem we construct a multinomial recombining tree using sampled values of the volatility from the stochastic volatility empirical measure. Moreover, we describe how to estimate the parameters of our model, including the long-memory parameter of the fractional Brownian motion that drives the volatility process using an implied method. Finally, we compute option prices on the S&P 500 index and we compare our estimated prices with the market option prices.  相似文献   

17.
This paper specifies a multivariate stochasticvolatility (SV) model for the S & P500 index and spot interest rateprocesses. We first estimate the multivariate SV model via theefficient method of moments (EMM) technique based on observations ofunderlying state variables, and then investigate the respective effects of stochastic interest rates, stochastic volatility, and asymmetric S & P500 index returns on option prices. We compute option prices using both reprojected underlying historical volatilities and the implied risk premiumof stochastic volatility to gauge each model's performance through direct comparison with observed market option prices on the index. Our major empirical findings are summarized as follows. First, while allowing for stochastic volatility can reduce the pricing errors and allowing for asymmetric volatility or leverage effect does help to explain the skewness of the volatility smile, allowing for stochastic interest rates has minimal impact on option prices in our case. Second, similar to Melino and Turnbull (1990), our empirical findings strongly suggest the existence of a non-zero risk premium for stochastic volatility of asset returns. Based on the implied volatility risk premium, the SV models can largely reduce the option pricing errors, suggesting the importance of incorporating the information from the options market in pricing options. Finally, both the model diagnostics and option pricing errors in our study suggest that the Gaussian SV model is not sufficientin modeling short-term kurtosis of asset returns, an SV model withfatter-tailed noise or jump component may have better explanatory power.  相似文献   

18.
Financial models with stochastic volatility or jumps play a critical role as alternative option pricing models for the classical Black–Scholes model, which have the ability to fit different market volatility structures. Recently, machine learning models have elicited considerable attention from researchers because of their improved prediction accuracy in pricing financial derivatives. We propose a generative Bayesian learning model that incorporates a prior reflecting a risk-neutral pricing structure to provide fair prices for the deep ITM and the deep OTM options that are rarely traded. We conduct a comprehensive empirical study to compare classical financial option models with machine learning models in terms of model estimation and prediction using S&P 100 American put options from 2003 to 2012. Results indicate that machine learning models demonstrate better prediction performance than the classical financial option models. Especially, we observe that the generative Bayesian neural network model demonstrates the best overall prediction performance.  相似文献   

19.
Index options became the most important traded contracts during their first year of existence. Two contracts, namely those on the S&P100 and the Major Markets Index, have a trading volume which typically surpasses the trading volume in all individual stock option contracts. In this paper, we examine the pricing of the options on the S&P100 and the Major Markets Index. Using intra-day prices, we find the options frequently violate the arbitrage boundary, put/call parity, and are substantially mispriced relative to theoretical values. Our results suggest that tests of option pricing models may be more difficult than previously realized due to nonsynchronous prices, even using “real-time” data from the exchanges.  相似文献   

20.
This paper investigates the predictive power of implied variancesextracted from the dollar/yen option prices. Implied variances areestimated from transaction prices of currency options traded on PHLXusing the option pricing model of Garman and Kohlhagen (1983). Incontrast to recent findings on stock and stock index options, theout-of-sample tests indicate that the implied variance is an upwardbiased estimator of future variance; and that the variance forecastsfrom GARCH and historical models do not contain significantincremental information in predicting future variance. Tradingstrategies are also developed to exploit the observed overstatementof variance in the dollar/yen option market. Traders that can executethe delta-neutral trading strategies at the observed markettransaction prices could lock in a significant profits during theperiod examined. However, for investors that facing highertransaction costs, the magnitude of the profits is generally notlarge enough to allow for abnormal risk-adjusted profits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号