首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Properties of the distribution of the deficit at ruin in the stationary renewal risk model are studied. A mixture representation for the conditional distribution of the deficit at ruin (given that ruin occurs) is derived, as well as a stochastic decomposition involving the residual lifetime associated with the maximal aggregate loss. When the individual claims have a phase-type distribution, the deficit at ruin is also of phase-type.  相似文献   

2.

In this paper we consider a risk process in which claim inter-arrival times have a phase-type(2) distribution, a distribution with a density satisfying a second order linear differential equation. We consider some ruin related problems. In particular, we consider the compound geometric representation of the infinite time survival probability, as well as the (defective) distributions of the surplus immediately prior to ruin and of the deficit at ruin. We also consider explicit solutions for the infinite time ruin probability in the case where the individual claim amount distribution is phase-type.  相似文献   

3.
This paper presents an explicit characterization for the joint probability density function of the surplus immediately prior to ruin and the deficit at ruin for a general risk process, which includes the Sparre-Andersen risk model with phase-type inter-claim times and claim sizes. The model can also accommodate a Markovian arrival process which enables claim sizes to be correlated with the inter-claim times. The marginal density function of the surplus immediately prior to ruin is specifically considered. Several numerical examples are presented to illustrate the application of this result.  相似文献   

4.
The dual risk model assumes that the surplus of a company decreases at a constant rate over time, and grows by means of upward jumps which occur at random times with random sizes. In the present work, we study the dual risk renewal model when the waiting times are phase-type distributed. Using the roots of the fundamental and the generalized Lundberg’s equations, we get expressions for the ruin probability and the Laplace transform of the time of ruin for an arbitrary single gain distribution. Then, we address the calculation of expected discounted future dividends particularly when the individual common gains follow a phase-type distribution. We further show that the optimal dividend barrier does not depend on the initial reserve. As far as the roots of the Lundberg equations and the time of ruin are concerned, we address the existing formulae in the corresponding Sparre-Andersen insurance risk model for the first hitting time, and we generalize them to cover also the situations where we have multiple roots. We do that working a new approach and technique, approach we also use for working the dividends, unlike others, it can be also applied for every situation.  相似文献   

5.
In this paper, we propose a class of infinite-dimensional phase-type distributions with finitely many parameters as models for heavy tailed distributions. The class of finite-dimensional phase-type distributions is dense in the class of distributions on the positive reals and may hence approximate any such distribution. We prove that formulas from renewal theory, and with a particular attention to ruin probabilities, which are true for common phase-type distributions also hold true for the infinite-dimensional case. We provide algorithms for calculating functionals of interest such as the renewal density and the ruin probability. It might be of interest to approximate a given heavy tailed distribution of some other type by a distribution from the class of infinite-dimensional phase-type distributions and to this end we provide a calibration procedure which works for the approximation of distributions with a slowly varying tail. An example from risk theory, comparing ruin probabilities for a classical risk process with Pareto distributed claim sizes, is presented and exact known ruin probabilities for the Pareto case are compared to the ones obtained by approximating by an infinite-dimensional hyper-exponential distribution.  相似文献   

6.
Numerical evaluation of ruin probabilities in the classical risk model is an important problem. If claim sizes are heavy-tailed, then such evaluations are challenging. To overcome this, an attractive way is to approximate the claim sizes with a phase-type distribution. What is not clear though is how many phases are enough in order to achieve a specific accuracy in the approximation of the ruin probability. The goals of this paper are to investigate the number of phases required so that we can achieve a pre-specified accuracy for the ruin probability and to provide error bounds. Also, in the special case of a completely monotone claim size distribution we develop an algorithm to estimate the ruin probability by approximating the excess claim size distribution with a hyperexponential one. Finally, we compare our approximation with the heavy traffic and heavy tail approximations.  相似文献   

7.
Abstract

Phase-type distributions are one of the most general classes of distributions permitting a Markovian interpretation. Sparre Andersen risk models with phase-type claim interarrival times or phase-type claims can be analyzed using Markovian techniques, and results can be expressed in compact matrix forms. Computations involved are readily programmable in practice.

This paper studies some quantities associated with the first passage time and the time of ruin in a Sparre Andersen risk model with phase-type interclaim times. In an earlier discussion the present author obtained a matrix expression for the Laplace transform of the first time that the surplus process reaches a given target from the initial surplus. Using this result, we analyze (1) the Laplace transform of the recovery time after ruin, (2) the probability that the surplus attains a certain level before ruin, and (3) the distribution of the maximum severity of ruin. We also give a matrix expression for the expected discounted dividend payments prior to ruin for the Sparre Andersen model in the presence of a constant dividend barrier.  相似文献   

8.
In this paper we consider a risk reserve process where the arrivals (either claims or capital injections) occur according to a Markovian point process. Both claim and capital injection sizes are phase-type distributed and the model allows for possible correlations between these and the inter-claim times. The premium income is modelled by a Markov-modulated Brownian motion which may depend on the underlying phases of the point arrival process. For this risk reserve model we derive a generalised Gerber–Shiu measure that is the joint distribution of the time to ruin, the surplus immediately before ruin, the deficit at ruin, the minimal risk reserve before ruin, and the time until this minimum is attained. Numeral examples illustrate the influence of the parameters on selected marginal distributions.  相似文献   

9.
We prove that the complete monotonicity is preserved under mixed geometric compounding, and hence show that the ruin probability, the Laplace transform of the ruin time, and the density of the tail of the joint distribution of ruin and the deficit at ruin in the Sparre Andersen model are completely monotone if the claim size distribution has a completely monotone density.  相似文献   

10.
We consider a class of Markovian risk models in which the insurer collects premiums at rate c1(c2) whenever the surplus level is below (above) a constant threshold level b. We derive the Laplace-Stieltjes transform (LST) of the distribution of the time to ruin as well as the LST (with respect to time) of the joint distribution of the time to ruin, the surplus prior to ruin, and the deficit at ruin. By interpreting that the insurer pays dividends continuously at rate c1?c2 whenever the surplus level is above b, we also derive the expected discounted value of total dividend payments made prior to ruin. Our results are obtained by making use of an existing connection which links an insurer's surplus process to an embedded fluid flow process.  相似文献   

11.
Abstract

The seminal paper by Gerber and Shiu (1998) unified and extended the study of the event of ruin and related quantities, including the time at which the event of ruin occurs, the deficit at the time of ruin, and the surplus immediately prior to ruin. The first two of these quantities are fundamentally important for risk management techniques that utilize the ideas of Value-at-Risk and Tail Value-at-Risk. As is well known, calculation of these and related quantities requires knowledge of the associated probability distributions. In this paper we derive an explicit expression for the joint (defective) distribution of the time to ruin, the surplus immediately prior to ruin, and the deficit at ruin in the classical compound Poisson risk model. As a by-product, we obtain expressions for the three bivariate distributions generated by the time to ruin, the surplus prior to ruin, and the deficit at ruin. Finally, we consider mixed Erlang claim sizes and show how the joint (defective) distribution of the time to ruin, the surplus prior to ruin, and the deficit at ruin can be calculated.  相似文献   

12.
Abstract

This paper studies the joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin. The time of ruin is analyzed in terms of its Laplace transforms, which can naturally be interpreted as discounting. Hence the classical risk theory model is generalized by discounting with respect to the time of ruin. We show how to calculate an expected discounted penalty, which is due at ruin and may depend on the deficit at ruin and on the surplus immediately before ruin. The expected discounted penalty, considered as a function of the initial surplus, satisfies a certain renewal equation, which has a probabilistic interpretation. Explicit answers are obtained for zero initial surplus, very large initial surplus, and arbitrary initial surplus if the claim amount distribution is exponential or a mixture of exponentials. We generalize Dickson’s formula, which expresses the joint distribution of the surplus immediately prior to and at ruin in terms of the probability of ultimate ruin. Explicit results are obtained when dividends are paid out to the stockholders according to a constant barrier strategy.  相似文献   

13.
We consider a class of Markovian risk models perturbed by a multiple threshold dividend strategy in which the insurer collects premiums at rate c i whenever the surplus level resides in the i-th surplus layer, i=1, 2, …,n+1 where n<∞. We derive the Laplace-Stieltjes transform (LST) of the distribution of the time to ruin as well as the discounted joint density of the surplus prior to ruin and the deficit at ruin. By interpreting that the insurer, whose gross premium rate is c, pays dividends continuously at rate d i =c?c i whenever the surplus level resides in the i-th surplus layer, we also derive the expected discounted value of total dividend payments made prior to ruin. Our results are obtained via a recursive approach which makes use of an existing connection, linking an insurer's surplus process to an embedded fluid flow process.  相似文献   

14.
Abstract

In this paper we consider the Sparre Andersen insurance risk model. Three cases are discussed: the ordinary renewal risk process, stationary renewal risk process, and s-delayed renewal risk process. In the first part of the paper we study the joint distribution of surplus immediately before and at ruin under the renewal insurance risk model. By constructing an exponential martingale, we obtain Lundberg-type upper bounds for the joint distribution. Consequently we obtain bounds for the distribution of the deficit at ruin and ruin probability. In the second part of the paper, we consider the special case of phase-type claims and rederive the closed-form expression for the distribution of the severity of ruin, obtained by Drekic et al. (2003, 2004). Finally, we present some numerical results to illustrate the tightness of the bounds obtained in this paper.  相似文献   

15.
The main focus of this paper is to extend the analysis of ruin-related quantities to the delayed renewal risk models. First, the background for the delayed renewal risk model is introduced and a general equation that is used as a framework is derived. The equation is obtained by conditioning on the first drop below the initial surplus level. Then, we consider the deficit at ruin among many random variables associated with ruin. The properties of the distribution function (DF) of the proper deficit are examined in particular.  相似文献   

16.
For a rather general class of risk-reserve processes, we provide an exact method for calculating different kinds of ruin probabilities, with particular emphasis on variations over Parisian type of ruin. The risk-reserve processes under consideration have, in general, dependent phase-type distributed claim sizes and inter-arrivals times, whereas the movement between claims can either be linear or follow a Brownian motion with linear drift. For such processes, we provide explicit formulae for classical, Parisian and cumulative Parisian types of ruin (for both finite and infinite time horizons) when the clocks are phase-type distributed. An erlangization scheme provides an efficient algorithmic methods for calculating the aforementioned ruin probabilities with deterministic clocks. Special attention is drawn to the construction of specific dependency structures, and we provide a number of numerical examples to study its effect on probabilities.  相似文献   

17.
Abstract

We describe an approach to the evaluation of the moments of the time of ruin in the classical Poisson risk model. The methodology employed involves the expression of these moments in terms of linear combinations of convolutions involving compound negative binomial distributions. We then adapt the results for use in the practically important case involving phase-type claim size distributions. We present numerical examples to illuminate the influence of claim size variability on the moments of the time of ruin.  相似文献   

18.
19.
In this paper, a dependent Sparre Andersen risk process in which the joint density of the interclaim time and the resulting claim severity satisfies the factorization as in Willmot and Woo is considered. We study a generalization of the Gerber–Shiu function (i) whose penalty function further depends on the surplus level immediately after the second last claim before ruin; and (ii) which involves the moments of the discounted aggregate claim costs until ruin. The generalized discounted density with a moment-based component proposed in Cheung plays a key role in deriving recursive defective renewal equations. We pay special attention to the case where the marginal distribution of the interclaim times is Coxian, and the required components in the recursion are obtained. A reverse type of dependency structure, where the claim severities follow a combination of exponentials, is also briefly discussed, and this leads to a nice explicit expression for the expected discounted aggregate claims until ruin. Our results are applied to generate some numerical examples involving (i) the covariance of the time of ruin and the discounted aggregate claims until ruin; and (ii) the expectation, variance and third central moment of the discounted aggregate claims until ruin.  相似文献   

20.

Analytic evaluation of the deficit at the time of ruin is shown to be simplified when the residual equilibrium density function associated with the claim size distribution has a certain property. This result is used to show that the conditional distribution of the deficit is a mixture of Erlangs (gamma with integer shape parameters) if the same is true of the claim size distribution. This unifies and generalizes previous results involving combinations of exponentials and a particular Erlang distribution. Extensions are then discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号