首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract

1. In an earlier Note1 I have suggested to measure the dependence between statistical variables by the expression where pij is the probability that x assumes the value xi and y the value yj , while By is meant summation with respect to all i and j for which pij > pi* p*j .  相似文献   

2.
Abstract

Rao [1] and simultaneously Cramér [2, 3] have shown that if f (x, θ) is the probability density function of a distribution involving an unknown parameter θ and distributed over the range α ? x ? b, where a and b are independent of θ, and if x 1 x 2 ... x n is a random sample of n independent observations from this distribution, the variance of any estimate unbiased for Ψ (θ), satisfies the inequality where E denotes mathematical expectation and is Fisher's information index about θ. In (1), equality holds if, and only if, θ* is sufficient for θ. This inequality is further generalized to the multi-parametric case.  相似文献   

3.
Abstract

Consider a sequence of independent random variables (r.v.) X 1 X 2, …, Xn , … , with the same distribution function (d.f.) F(x). Let E (Xn ) = 0, E , E (?(X)) denoting the mean value of the r.v. ? (X). Further, let the r.v. where have the d.f. F n (x). It was proved by Berry [1] and the present author (Esseen [2], [4]) that Φ(x) being the normal d.f.   相似文献   

4.
Abstract

Bhattacharyya & Roussas (1969) proposed to estimate the functional Δ = ∫ ?∞/ f 2(x)dx by , where is a kernel estimate of the probability density f(x). Schuster (1974) proposed, alternatively, to estimate Δ by , where F n (x) is the sample distribution function, and showed that the two estimates attain the same rate of strong convergence to Δ. In this note, two large sample properties of are presented, first strong convergence of to Δ is established under less assumptions than those of Schuster (1974), and second the asymptotic normality of established.  相似文献   

5.
Abstract

Let Xbv (v = 1,2, ..., n) be independent random variables with the distribution functions Fbvx) and suppose . We define a random variable by where and denote the distribution function of X by F (x.  相似文献   

6.
Abstract

1. A problem to which attention has been given from time to time without leading to really satisfactory results is to find simple and sufficiently narrow limits to the error involved in the formula connecting ā x and ä x , viz.   相似文献   

7.
Abstract

1. In the discussion that followed the reading to the Danish Actuarial Society of the paper quoted below1 it was suggested by Mr N. E. Andersen that the hypothesis T. F. (49), or , employed in the second half of the paper, might with advantage be replaced by xo being the initial age. In this way it is obtained that and it then follows, by T. F. (6), that   相似文献   

8.
Abstract

1. Introduction.

A sample of N independently observed points (xo 1 | x11 , x21 ,... , xpt ), i = 1, 2, ... , N≥ p is given, where xk, k = 1, 2, ... , p are known, possibly choosable, non-random variates. Suppose now that, for any fixed values of x1 , x2 ..., xp the random variable o is normally distributed with the mean and the variance λo α x and λo are unknown parameters, not involving xk, the regression coefficients and the residual variance of the parent population respectively.  相似文献   

9.
Abstract

Sei ?(x) eine für ? ∞ < x < + ∞ definierte reelle nichtnegative Funktion und   相似文献   

10.
Abstract

Im Zinsfussproblem spielen eine wichtige Rolle drei Hilfsfunktionen der Summen der diskontierten Zahlen, die wir vorweg kurz erwahnen wollen. Unter der nten Summe der diskontierten Zahlen Dx verstehen wir SpezieU haben wir:   相似文献   

11.
Abstract

1. Introduction

(a) Maximum Likelihood.—In a previous paper (THIS JOURNAL, vol. XXXII, 1949, pp. 135–159) the author gave tables of the functions and where ?(x) denotes the normal law of distribution, φ(x) its integral and ?′(x) its first derivative. With the aid of these tables it is practicable to solve the maximum likelihood equations for coarsely grouped normal observations. The procedure was illustrated by examples.  相似文献   

12.
Abstract

When applying a proportional reinsurance policy π the reserve of the insurance company is governed by a SDE =(aπ (t)u dt + aπ (t)σ dWt where {Wt } is a standard Brownian motion, µ, π, > 0 are constants and 0 ? aπ (t) ? 1 is the control process, where aπ (t) denotes the fraction, that is reinsured at time t. The aim of this paper is to find a policy that maximizes the return function Vπ (x) = where c > 0, τπ is the time of ruin and x refers to the initial reserve.  相似文献   

13.
Abstract

A one-dimensional random variable X is given. We have L points, µ1, µ2, …, µ L , and define the random variable Z = minµ h | X — µ h |, that is the distance to the nearest of the L points µ1, …, µ L . We want to find that set of points µ h for which the function has a minimum. As we shall see in section 2, this problem is equivalent to finding L strata with the set of points of stratification x 1, x 2, …, x L?1 that makes a minimum. wh is the probability mass and σ2 h the variance of the hth stratum. By differentiation of φ with respect to xh one can show [3] that a necessary condition for minimum is where µh is the mean of the hth stratum. In section 2 we obtain this condition in another way, which at the same time gives a method of finding the points µh and xh .  相似文献   

14.
《Scandinavian actuarial journal》2013,2013(3-4):207-218
Abstract

Extract

d1. Vis, at man for n ? 2 har når x ikke antager nogen af værdierne 0, ?1, ..., ?n+1, og når x ikke antager nogen af værdierne 0, 1, ..., n+1.  相似文献   

15.
Abstract

Although most applications of stratified sampling represent sampling from a finite population, π(N), consisting of k mutually exclusive sub-populations or strata, n, (N,), it is for purposes of theoretical investigations convenient to deal with a hypothetical population n, represented by a distribution function f(y), a < y < b. This hypothetical population likewise consists of k mutually exclusive strata, πi , i = 1,.2 ... k. The mean of this population is µi being the mean of ni. By means of a random sample of n observations, ni of which are selected from πi , µ, is estimated by: being the estimate of µi .  相似文献   

16.
Abstract

A mixture-Poisson distribution is defined by where U(x) is a distribution function concentrated on (0, ∞). This distribution has been applied as a model of the number of claims occurring in an insurance business during a certain period of time.  相似文献   

17.
Abstract

A complete proof of existence of a probability measure m the space Ω of all sample functions was given by Cramér [4]. For a finitc period, a simplified proof was given in my paper [2]. The latter proof could be restricted to the space of sample functions having only a finite number of jumps, as the probability of an infinite number of jumps is zero in this case. In fact, dividing the space Ω into disjunct subspaces Ωn containing exactly n jumps we have: The measure of Ωn m the case of a finite period of length x is: Thus and consequently P) = 0. Therefore the set Ω and all its subsets can be neglected.  相似文献   

18.
Abstract

Considérons une distribution statistique (empirique ou théorique) x v (v = 1, 2 ... n) désignant les valeurs que peut assumer une variable fortuite une-dimensionelle x, et Pv (v= 1,2 ... n) désignant les fréquences observées (absolues ou relatives) ou bien les probabilités des valeurs xv .  相似文献   

19.
Abstract

1. Es sei ?(x) eine für ? ∞ < x < + ∞ reelle nichtnegative Funktion, die für x = a ihr Maximum hat und von a nach beiden Seiten monoton abnimmt. 1 d. h. ?(x) ≦ ?(x′) für jedes x und jedes zwischen α und x gelegene x′. Ferner sei und konvergent.  相似文献   

20.
Summary

In a paper in Biometrika, Anscombe (1950) considered the question of solving the equation with respect to x. Here “Log” denotes the natural logarithm, while N s , where N k >0 and N s =0 for s>k, denotes the number of items ?s in a sample of independent observations from a population with the negative binomial distribution and m denotes the sampling mean: it can in the case k ? 2 be shown that the equation (*) has at least one root. In vain search for “Gegenbeispiele”, Anscombe was led to the conjecture (l.c., 367) that (*) has no solution, if m 2 > 2S, and a unique solution, if k ? 2 and m 2 < 2S. In the latter case, x equals the maximum-likelihood estimate of the parameter ?.

In the present paper it will, after some preliminaries, be shown that the equation (*) has no solution, if k=l, or if k?2 and m 2 ? 2S, whereas (*) has a unique solution, if k ? 2 and m 2 < 2S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号