首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
We propose a method for estimating Value at Risk (VaR) and related risk measures describing the tail of the conditional distribution of a heteroscedastic financial return series. Our approach combines pseudo-maximum-likelihood fitting of GARCH models to estimate the current volatility and extreme value theory (EVT) for estimating the tail of the innovation distribution of the GARCH model. We use our method to estimate conditional quantiles (VaR) and conditional expected shortfalls (the expected size of a return exceeding VaR), this being an alternative measure of tail risk with better theoretical properties than the quantile. Using backtesting of historical daily return series we show that our procedure gives better 1-day estimates than methods which ignore the heavy tails of the innovations or the stochastic nature of the volatility. With the help of our fitted models we adopt a Monte Carlo approach to estimating the conditional quantiles of returns over multiple-day horizons and find that this outperforms the simple square-root-of-time scaling method.  相似文献   

2.
Forecasting Value-at-Risk (VaR) for financial portfolios is a crucial task in applied financial risk management. In this paper, we compare VaR forecasts based on different models for return interdependencies: volatility spillover (Engle & Kroner, 1995), dynamic conditional correlations (Engle, 2002, 2009) and (elliptical) copulas (Embrechts et al., 2002). Moreover, competing models for marginal return distributions are applied. In particular, we apply extreme value theory (EVT) models to GARCH-filtered residuals to capture excess returns.Drawing on a sample of daily data covering both calm and turbulent market phases, we analyze portfolios consisting of German Stocks, national indices and FX-rates. VaR forecasts are evaluated using statistical backtesting and Basel II criteria. The extensive empirical application favors the elliptical copula approach combined with extreme value theory (EVT) models for individual returns. 99% VaR forecasts from the EVT-GARCH-copula model clearly outperform estimates from alternative models accounting for dynamic conditional correlations and volatility spillover for all asset classes in times of financial crisis.  相似文献   

3.
Risk management under extreme events   总被引:3,自引:0,他引:3  
This article presents two applications of extreme value theory (EVT) to financial markets: computation of value at risk (VaR) and cross-section dependence of extreme returns (i.e., tail dependence). We use a sample comprised of the United States, Europe, Asia, and Latin America. Our main findings are the following. First, on average, EVT gives the most accurate estimate of VaR. Second, tail dependence of paired returns decreases substantially when both heteroscedasticity and serial correlation are filtered out by a multivariate GARCH model. Both findings are in agreement with previous research in this area for other financial markets.  相似文献   

4.
This article applies realized volatility forecasting to Extreme Value Theory (EVT). We propose a two-step approach where returns are first pre-whitened with a high-frequency based volatility model, and then an EVT based model is fitted to the tails of the standardized residuals. This realized EVT approach is compared to the conditional EVT of McNeil & Frey (2000). We assess both approaches' ability to filter the dependence in the extremes and to produce stable out-of-sample VaR and ES estimates for one-day and ten-day time horizons. The main finding is that GARCH-type models perform well in filtering the dependence, while the realized EVT approach seems preferable in forecasting, especially at longer time horizons.  相似文献   

5.
林宇 《投资研究》2012,(1):41-56
本文在金融市场典型事实约束下,运用ARFIMA模型对金融市场条件收益率建模,运用GARCH、GJR、FIGARCH、APARCH、FIAPARCH等5种模型对金融波动率进行建模,进而运用极值理论(EVT)对标准收益的极端尾部风险建模来测度各股市的动态风险,并用返回测试(Back-testing)方法检验模型的适应性。实证结果表明,总的来说,FIAPARCH-EVT模型对各个市场具有较强的适应性,风险测度能力较为优越。进一步,本文在ARFIMA-FIAPARCH模型下,假定标准收益分别服从正态分布(N)、学生t分布(st)、有偏学生t分布(skst)、广义误差分布(GED)共4种分布,对各股市的动态风险测度的准确性进行检验,并和EVT方法的测度结果进行对比分析。结果表明,EVT方法风险测度能力优于其他方法,有偏学生t分布假设下的风险测度模型虽然略逊于EVT方法,但也不失为一种较好的方法;ARFIMA-FI-APARCH-EVT不仅在中国大陆沪深股市表现最为可靠,而且在其他市场也表现出同样的可靠性。  相似文献   

6.
The effect of heavy tails due to rare events and different levels of asymmetry associated with high volatility clustering in the emerging financial markets requires sophisticated models for statistical modelling of such stylized facts. This article applies extreme value theory (EVT) to quantify tail risk on the daily returns of Mexican stock market under aggregation of foreign exchange rate risk from January 1971 to December 2010. This study focuses on the maximum-block method and generalized extreme value distribution (GEVD) to model the asymptotic behavior of extreme returns in US dollars. The empirical results show that EVT-Based VaR measured at high confidence levels performs better than simulation historical and delta-normal VaR models on capturing fat-tails in the returns of highly volatile stock markets. Additionally, international investors holding long positions in Mexican stock market are more prone to experience larger potential losses than investors with short positions during local currency depreciation and financial crisis periods.  相似文献   

7.
The study compares the predictive ability of various models in estimating intraday Value-at-Risk (VaR) and Expected Shortfall (ES) using high frequency share price index data from sixteen different countries across the world for a period of seven and half months from September 20, 2013 to May 07, 2014. The main emphasis of the study has been given to Extreme Value Theory (EVT) and to evaluate how well Conditional EVT model performs in modeling tails of distributions and in estimating and forecasting intraday VaR and ES measures. We have followed McNeil and Frey's (2000) two stage approach called Conditional EVT to estimate dynamic intraday VaR and ES. We have compared the accuracy of Conditional EVT approach to intraday VaR and ES estimation with other competing models. The best performing model is found to be the Conditional EVT in estimating both the quantiles for the entire sample. The study is useful for market participants (such as intraday traders and market makers) involved in frequent intraday trading in such equity markets.  相似文献   

8.
The purpose of the study is to estimate tail-related risk measures using extreme value theory (EVT) in the Indian stock market. The study employs a two stage approach of conditional EVT originally proposed by McNeil and Frey (2000) to estimate dynamic Value at Risk (VaR) and expected shortfall (ES). The dynamic risk measures have been estimated for different percentiles for negative and positive returns. The estimates of risk measures computed under different quantile levels exhibit strong stability across a range of the selected thresholds, implying the accuracy and reliability of the estimated quantile based risk measures.  相似文献   

9.
We use stock market data to analyze the quality of alternative models and procedures for forecasting expected shortfall (ES) at different significance levels. We compute ES forecasts from conditional models applied to the full distribution of returns as well as from models that focus on tail events using extreme value theory (EVT). We also apply the semiparametric filtered historical simulation (FHS) approach to ES forecasting to obtain 10-day ES forecasts. At the 10-day horizon we combine FHS with EVT. The performance of the different models is assessed using six different ES backtests recently proposed in the literature. Our results suggest that conditional EVT-based models produce more accurate 1-day and 10-day ES forecasts than do non-EVT based models. Under either approach, asymmetric probability distributions for return innovations tend to produce better forecasts. Incorporating EVT in parametric or semiparametric approaches also improves ES forecasting performance. These qualitative results are also valid for the recent crisis period, even though all models then underestimate the level of risk. FHS narrows the range of numerical forecasts obtained from alternative models, thereby reducing model risk. Combining EVT and FHS seems to be best approach for obtaining accurate ES forecasts.  相似文献   

10.
Intraday Value-at-Risk (VaR) is one of the risk measures used by market participants involved in high-frequency trading. High-frequency log-returns feature important kurtosis (fat tails) and volatility clustering (extreme log-returns appear in clusters) that VaR models should take into account. We propose a marked point process model for the excesses of the time series over a high threshold that combines Hawkes processes for the exceedances with a generalized Pareto distribution model for the marks (exceedance sizes). The conditional approach features intraday clustering of extremes and is used to calculate instantaneous conditional VaR. The models are backtested on real data and compared to a competitor approach that proposes a nonparametric extension of the classical peaks-over-threshold method. Maximum likelihood estimation is computationally intensive; we use a differential evolution genetic algorithm to find adequate starting values for the optimization process.  相似文献   

11.
Conditional VaR using EVT - Towards a planned margin scheme   总被引:2,自引:0,他引:2  
This paper constructs a robust Value-at-Risk (VaR) measure for the Indian stock markets by combining two well-known facts about equity return time series — dynamic volatility resulting in the well-recognized phenomenon of volatility clustering, and non-normality giving rise to fat tails of the return distribution. While the phenomenon of volatility dynamics has been extensively studied using GARCH model and its many relatives, the application of Extreme Value Theory (EVT) is relatively recent in tracking extreme losses in the study of risk measurement. There are recent applications of Extreme Value Theory to estimate the unexpected losses due to extreme events and hence modify the current methodology of VaR. Extreme value theory (EVT) has been used to analyze financial data showing clear non-normal behavior. We combine the two methodologies to come up with a robust model with much enhanced predictive abilities. A robust model would obviate the need for imposing special ad hoc margins by the regulator in times of extreme volatility. A rule based margin system would increase efficiency of the price discovery process and also the market integrity with the regulator no longer seen as managing volatility.  相似文献   

12.
《Quantitative Finance》2013,13(6):426-441
Abstract

The benchmark theory of mathematical finance is the Black–Scholes–Merton (BSM) theory, based on Brownian motion as the driving noise process for stock prices. Here the distributions of financial returns of the stocks in a portfolio are multivariate normal. Risk management based on BSM underestimates tails. Hence estimation of tail behaviour is often based on extreme value theory (EVT). Here we discuss a semi-parametric replacement for the multivariate normal involving normal variance–mean mixtures. This allows a more accurate modelling of tails, together with various degrees of tail dependence, while (unlike EVT) the whole return distribution can be modelled. We use a parametric component, incorporating the mean vector μ and covariance matrix Σ, and a non-parametric component, which we can think of as a density on [0,∞), modelling the shape (in particular the tail decay) of the distribution. We work mainly within the family of elliptically contoured distributions, focusing particularly on normal variance mixtures with self-decomposable mixing distributions. We discuss efficient methods to estimate the parametric and non-parametric components of our model and provide an algorithm for simulating from such a model. We fit our model to several financial data series. Finally, we calculate value at risk (VaR) quantities for several portfolios and compare these VaRs to those obtained from simple multivariate normal and parametric mixture models.  相似文献   

13.
A traditional Monte Carlo simulation using linear correlations induces estimation bias in measuring portfolio value-at-risk (VaR), due to the well-documented existence of fat-tail, skewness, truncations, and non-linear relations in return distributions. In this paper, we consider the above issues in modeling VaR and evaluate the effectiveness of using copula-extreme-value-based semiparametric approaches. To assess portfolio risk in six Asian markets, we incorporate a combination of extreme value theory (EVT) and various copulas to build joint distributions of returns. A backtesting analysis using a Monte Carlo VaR simulation suggests that the Clayton copula-EVT evinces the best performance regardless of the shapes of the return distributions, and that in general the copulas with the EVT provide better estimations of VaRs than the copulas with conventionally employed empirical distributions. These findings still hold in conditional-coverage-based backtesting. These findings indicate the economic significance of incorporating the down-side shock in risk management.  相似文献   

14.
Risk Measurement Performance of Alternative Distribution Functions   总被引:1,自引:0,他引:1  
This paper evaluates the performance of three extreme value distributions, i.e., generalized Pareto distribution (GPD), generalized extreme value distribution (GEV), and Box‐Cox‐GEV, and four skewed fat‐tailed distributions, i.e., skewed generalized error distribution (SGED), skewed generalized t (SGT), exponential generalized beta of the second kind (EGB2), and inverse hyperbolic sign (IHS) in estimating conditional and unconditional value at risk (VaR) thresholds. The results provide strong evidence that the SGT, EGB2, and IHS distributions perform as well as the more specialized extreme value distributions in modeling the tail behavior of portfolio returns. All three distributions produce similar VaR thresholds and perform better than the SGED and the normal distribution in approximating the extreme tails of the return distribution. The conditional coverage and the out‐of‐sample performance tests show that the actual VaR thresholds are time varying to a degree not captured by unconditional VaR measures. In light of the fact that VaR type measures are employed in many different types of financial and insurance applications including the determination of capital requirements, capital reserves, the setting of insurance deductibles, the setting of reinsurance cedance levels, as well as the estimation of expected claims and expected losses, these results are important to financial managers, actuaries, and insurance practitioners.  相似文献   

15.
《Pacific》2000,8(2):249-275
Value-at-risk (VaR) measures are generated using extreme value theory by modelling the tails of the return distributions of six Asian financial markets during the recent volatile market conditions. The maxima and minima of these return series were found to be satisfactorily modelled within an extreme value framework and the value at risk measures generated within this structure were found to be different to those generated by variance–covariance and historical methods, particularly for markets characterised by high degrees of leptokurtosis such as Malaysia and Indonesia.  相似文献   

16.
This paper investigates the role of high-order moments in the estimation of conditional value at risk (VaR). We use the skewed generalized t distribution (SGT) with time-varying parameters to provide an accurate characterization of the tails of the standardized return distribution. We allow the high-order moments of the SGT density to depend on the past information set, and hence relax the conventional assumption in conditional VaR calculation that the distribution of standardized returns is iid. The maximum likelihood estimates show that the time-varying conditional volatility, skewness, tail-thickness, and peakedness parameters of the SGT density are statistically significant. The in-sample and out-of-sample performance results indicate that the conditional SGT-GARCH approach with autoregressive conditional skewness and kurtosis provides very accurate and robust estimates of the actual VaR thresholds.  相似文献   

17.
In this study, we compare the out-of-sample forecasting performance of several modern Value-at-Risk (VaR) estimators derived from extreme value theory (EVT). Specifically, in a multi-asset study covering 30 years of stock, bond, commodity and currency market data, we analyse the accuracy of the classic generalised Pareto peak over threshold approach and three recently proposed methods based on the Box–Cox transformation, L-moment estimation and the Johnson system of distributions. We find that, in their unconditional form, some of the estimators may be acceptable under current regulatory assessment rules but none of them can continuously pass more advanced tests of forecasting accuracy. In their conditional forms, forecasting power is significantly increased and the Box–Cox method proves to be the most promising estimator. However, it is also important to stress that the traditional historical simulation approach, which is currently the most frequently used VaR estimator in commercial banks, can not only keep up with the EVT-based methods but occasionally even outperforms them (depending on the setting: unconditional versus conditional). Thus, recent claims to generally replace this simple method by theoretically more advanced EVT-based methods may be premature.  相似文献   

18.
Varying the VaR for unconditional and conditional environments   总被引:1,自引:0,他引:1  
Accurate forecasting of risk is the key to successful risk management techniques. Using the largest stock index futures from 12 European bourses, this paper presents VaR measures based on their unconditional and conditional distributions for single and multi-period settings. These measures underpinned by extreme value theory are statistically robust explicitly allowing for fat-tailed densities. Conditional tail estimates accounting for volatility clustering are obtained by adjusting the unconditional extreme value procedure with GARCH filtered returns. The conditional modelling results in iid returns allowing for the use of a simple and efficient multi-period extreme value scaling law. The paper examines the properties of these distinct conditional and unconditional trading models. The paper finds that the biases inherent in unconditional single and multi-period estimates assuming normality extend to the conditional setting.  相似文献   

19.
This study investigates the time-varying volatility and risk measures of ethical and unethical investments. We apply the Bayesian Markov-switching generalized autoregressive conditional heteroscedasticity (MS-GARCH) approach to compute the value-at-risk (VaR) and expected shortfall (ES) of ethical and unethical indices returns, which allows for detecting the differences between ethical and unethical investments. The innovative finding of our study is that ethical investments are less affected during global financial crises compared with unethical and conventional investments. The policy implication of this study is that investors should consider ethical investments as a hedging asset for their portfolios during extreme market conditions.  相似文献   

20.
In this paper, we propose an explicit estimation of Value-at-Risk (VaR) and Expected Shortfall (ES) for linear portfolios when the risk factors change with a convex mixture of generalized Laplace distributions (M-GLD). We introduce the dynamics Delta-GLD-VaR, Delta-GLD-ES, Delta-MGLD-VaR and Delta-MGLD-ES, by using conditional correlation multivariate GARCH. The generalized Laplace distribution impose less restrictive assumptions during estimation that should improve the precision of the VaR and ES through the varying shape and fat tails of the risk factors in relation with the historical sample data. We also suggested some areas of application to measure price risk in agriculture, risk management and financial portfolio optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号