首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   3篇
  工业经济   3篇
  2020年   1篇
  2018年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
为了探索智能批阅小学生作业的可行性,以小学生英文手写体为研究对象,建立了基于关键点的CenterNet模型。首先,针对低显存环境下CenterNet模型的构造与学习,提出了一种新的以组规范化(GN)替换批量规范化(BN)的池化模块结构改造方案,得到了改造版CenterNet模型;之后,将改造版CenterNet模型用于小学生英文手写体区域检测,实现了基于深度学习的英文手写体区域检测。将改造版CenterNet模型与原始CenterNet模型和CornerNet-Lite基准模型进行检测比较。实验表明:2种版本CenterNet模型的英文手写体区域检测精度和平均召回率均高于基准模型的相应值,改造版CenterNet模型的AP0.5值甚至可达到73.1%,比基准模型高出近6%;此外,相比于基准模型,改造版的CenterNet模型的漏检情况更少,并在一定程度上有效抑制了误检。改造版的CenterNet模型不仅检测性能优于原始CenterNet模型,而且其学习过程更稳定、收敛更快,这为小学生作业智能批阅方案的设计提供了有价值的解决途径。  相似文献
2.
针对温度会影响红外CO_2传感器的输出电压,造成对CO_2的浓度检测误差较大的问题,提出了一种基于L-M贝叶斯正则化BP神经网络的温度补偿方法。实验中将传感器输出电压比和温度作为神经网络的输入,CO_2浓度作为神经网络的输出,并通过L-M算法和贝叶斯正则化对神经网络进行优化。经过实验仿真证明,在温度补偿后红外CO_2传感器测量输出的浓度值最大相对误差为4.557 8%,具有较高的精确度。因此L-M贝叶斯正则化BP神经网络能对红外CO_2传感器进行有效的温度补偿,可为相关红外传感器仪器的改进提供参考。  相似文献
3.
为了解决短文本稀疏性问题,提高主题模型的性能,提出了一种词向量嵌入的主题模型。首先,假设一篇文档只包含一个主题;其次,利用词向量对每一轮迭代的主题进行扩充与调整,即对每一个主题,利用一种非参数化的概率采样方法得到一些词,再用词向量找出相似词,提升该主题下相似词的权重;最后,用拉普拉斯近似主题分布,使其更好地运用在变分自动编码器训练中,从而加快训练速度。实验结果表明,本文模型训练出的主题具有较好的解释性,并优于其他主流的模型,可为短文本的主题提取提供更多的可能。在主题模型训练的过程中,利用词向量干预主题词分布可以得到较好的主题质量,并可以通过变分自动编码器加快训练速度,对自然语言处理问题的研究具有一定的创新性和参考价值。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号