首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  计划管理   1篇
  2020年   1篇
排序方式: 共有1条查询结果,搜索用时 9 毫秒
1
1.
ABSTRACT

In this paper, we focus on fault prediction in the smart distribution network. modified version of voted random forest algorithm (VRF) is proposed for enhancing the predicting accuracy of the faults. We change the decision process by redesigning the voting algorithm by introducing multiple SVM models for voting model training. Based on the trained models, a simple NSGA algorithm is applied to find the best voting model. Results showed that the new algorithm could improve the accuracy and recall rate of the fault prediction, especially for the recall rate of the negative samples.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号