首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
财政金融   11篇
工业经济   1篇
贸易经济   8篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
Rotating savings and credit association (ROSCA) is a well-known microfinance association widely used in many countries around the world with long histories. By considering extra profits that such a system can provide when compared to banking transactions, we develop optimization problems to achieve an optimal design of a ROSCA. We find that ROSCAs might attract investors when deposit and loan rates from formal banking systems are not favorable. Furthermore, optimal rates and optimal orders to maximize system outputs are reported.  相似文献   
2.
We derive an explicit representation of the transitions of the Heston stochastic volatility model and use it for fast and accurate simulation of the model. Of particular interest is the integral of the variance process over an interval, conditional on the level of the variance at the endpoints. We give an explicit representation of this quantity in terms of infinite sums and mixtures of gamma random variables. The increments of the variance process are themselves mixtures of gamma random variables. The representation of the integrated conditional variance applies the Pitman–Yor decomposition of Bessel bridges. We combine this representation with the Broadie–Kaya exact simulation method and use it to circumvent the most time-consuming step in that method.  相似文献   
3.
Portfolio credit derivatives are contracts that are tied to an underlying portfolio of defaultable reference assets and have payoffs that depend on the default times of these assets. The hedging of credit derivatives involves the calculation of the sensitivity of the contract value with respect to changes in the credit spreads of the underlying assets, or, more generally, with respect to parameters of the default-time distributions. We derive and analyze Monte Carlo estimators of these sensitivities. The payoff of a credit derivative is often discontinuous in the underlying default times, and this complicates the accurate estimation of sensitivities. Discontinuities introduced by changes in one default time can be smoothed by taking conditional expectations given all other default times. We use this to derive estimators and to give conditions under which they are unbiased. We also give conditions under which an alternative likelihood ratio method estimator is unbiased. We illustrate the application and verification of these conditions and estimators in the particular case of the multifactor Gaussian copula model, but the methods are more generally applicable.   相似文献   
4.
Many of the most widely used models in finance fall within the affine family of diffusion processes. The affine family combines modeling flexibility with substantial tractability, particularly through transform analysis; these models are used both for econometric modeling and for pricing and hedging of derivative securities. We analyze the tail behavior, the range of finite exponential moments, and the convergence to stationarity in affine models, focusing on the class of canonical models defined by Dai and Singleton (2000) . We show that these models have limiting stationary distributions and characterize these limits. We show that the tails of both the transient and stationary distributions of these models are necessarily exponential or Gaussian; in the non-Gaussian case, we characterize the tail decay rate for any linear combination of factors. We also give necessary and sufficient conditions for a linear combination of factors to be Gaussian. Our results follow from an investigation into the stability properties of the systems of ordinary differential equations associated with affine diffusions.  相似文献   
5.
Recent work has documented roughness in the time series of stock market volatility and investigated its implications for option pricing. We study a strategy for trading stocks based on measures of their implied and realized roughness. A strategy that goes long the roughest-volatility stocks and short the smoothest-volatility stocks earns statistically significant excess annual returns of 6% or more, depending on the time period and strategy details. The profitability of the strategy is not explained by standard factors. We compare alternative measures of roughness in volatility and find that the profitability of the strategy is greater when we sort stocks based on implied rather than realized roughness. We interpret the profitability of the strategy as compensation for near-term idiosyncratic event risk.  相似文献   
6.
A Continuity Correction for Discrete Barrier Options   总被引:6,自引:0,他引:6  
The payoff of a barrier option depends on whether or not a specified asset price, index, or rate reaches a specified level during the life of the option. Most models for pricing barrier options assume continuous monitoring of the barrier; under this assumption, the option can often be priced in closed form. Many (if not most) real contracts with barrier provisions specify discrete monitoring instants; there are essentially no formulas for pricing these options, and even numerical pricing is difficult. We show, however, that discrete barrier options can be priced with remarkable accuracy using continuous barrier formulas by applying a simple continuity correction to the barrier. The correction shifts the barrier away from the underlying by a factor of exp(bet sig sqrt dt), where bet approx 0.5826, sig is the underlying volatility, and dt is the time between monitoring instants. The correction is justified both theoretically and experimentally.  相似文献   
7.
Portfolio Value-at-Risk with Heavy-Tailed Risk Factors   总被引:9,自引:0,他引:9  
This paper develops efficient methods for computing portfolio value-at-risk (VAR) when the underlying risk factors have a heavy-tailed distribution. In modeling heavy tails, we focus on multivariate t distributions and some extensions thereof. We develop two methods for VAR calculation that exploit a quadratic approximation to the portfolio loss, such as the delta-gamma approximation. In the first method, we derive the characteristic function of the quadratic approximation and then use numerical transform inversion to approximate the portfolio loss distribution. Because the quadratic approximation may not always yield accurate VAR estimates, we also develop a low variance Monte Carlo method. This method uses the quadratic approximation to guide the selection of an effective importance sampling distribution that samples risk factors so that large losses occur more often. Variance is further reduced by combining the importance sampling with stratified sampling. Numerical results on a variety of test portfolios indicate that large variance reductions are typically obtained. Both methods developed in this paper overcome difficulties associated with VAR calculation with heavy-tailed risk factors. The Monte Carlo method also extends to the problem of estimating the conditional excess, sometimes known as the conditional VAR.  相似文献   
8.
We investigate and compare two dual formulations of the American option pricing problem based on two decompositions of supermartingales: the additive dual of Haugh and Kogan (Oper. Res. 52:258–270, 2004) and Rogers (Math. Finance 12:271–286, 2002) and the multiplicative dual of Jamshidian (Minimax optimality of Bermudan and American claims and their Monte- Carlo upper bound approximation. NIB Capital, The Hague, 2003). Both provide upper bounds on American option prices; we show how to improve these bounds iteratively and use this to show that any multiplicative dual can be improved by an additive dual and vice versa. This iterative improvement converges to the optimal value function. We also compare bias and variance under the two dual formulations as the time horizon grows; either method may have smaller bias, but the variance of the multiplicative method typically grows much faster than that of the additive method. We show that in the case of a discrete state space, the additive dual coincides with the dual of the optimal stopping problem in the sense of linear programming duality and the multiplicative method arises through a nonlinear duality.   相似文献   
9.
LARGE DEVIATIONS IN MULTIFACTOR PORTFOLIO CREDIT RISK   总被引:2,自引:0,他引:2  
The measurement of portfolio credit risk focuses on rare but significant large-loss events. This paper investigates rare event asymptotics for the loss distribution in the widely used Gaussian copula model of portfolio credit risk. We establish logarithmic limits for the tail of the loss distribution in two limiting regimes. The first limit examines the tail of the loss distribution at increasingly high loss thresholds; the second limiting regime is based on letting the individual loss probabilities decrease toward zero. Both limits are also based on letting the size of the portfolio increase. Our analysis reveals a qualitative distinction between the two cases: in the rare-default regime, the tail of the loss distribution decreases exponentially, but in the large-threshold regime the decay is consistent with a power law. This indicates that the dependence between defaults imposed by the Gaussian copula is qualitatively different for portfolios of high-quality and lower-quality credits.  相似文献   
10.
A credit valuation adjustment (CVA) is an adjustment applied to the value of a derivative contract or a portfolio of derivatives to account for counterparty credit risk. Measuring CVA requires combining models of market and credit risk to estimate a counterparty's risk of default together with the market value of exposure to the counterparty at default. Wrong‐way risk refers to the possibility that a counterparty's likelihood of default increases with the market value of the exposure. We develop a method for bounding wrong‐way risk, holding fixed marginal models for market and credit risk and varying the dependence between them. Given simulated paths of the two models, a linear program computes the worst‐case CVA. We analyze properties of the solution and prove convergence of the estimated bound as the number of paths increases. The worst case can be overly pessimistic, so we extend the procedure by constraining the deviation of the joint model from a baseline reference model. Measuring the deviation through relative entropy leads to a tractable convex optimization problem that can be solved through the iterative proportional fitting procedure. Here, too, we prove convergence of the resulting estimate of the penalized worst‐case CVA and the joint distribution that attains it. We consider extensions with additional constraints and illustrate the method with examples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号