首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
贸易经济   3篇
经济概况   1篇
  2013年   1篇
  2007年   1篇
  2002年   1篇
  1999年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The purpose of the study is to understand whether it is still viable to use tax incentives to attract foreign direct investment (FDI) considering their effectiveness and costs to the country, and if not, what should be the alternative, effective, and viable means of promoting the vital FDI inflow. The study investigated various incentives provided by BOI, and other relevant sources available as secondary sources. However, the multinational enterprises (MNEs) are not attracting for investment in Bangladesh always with tax incentives and there are alternative means of attracting FDI such as direct financial grants, subsidies loan guarantees, etc. This paper focuses on tax incentives and the debate against the effectiveness and efficiency in attracting FDI.  相似文献   
2.
Portfolio Value-at-Risk with Heavy-Tailed Risk Factors   总被引:9,自引:0,他引:9  
This paper develops efficient methods for computing portfolio value-at-risk (VAR) when the underlying risk factors have a heavy-tailed distribution. In modeling heavy tails, we focus on multivariate t distributions and some extensions thereof. We develop two methods for VAR calculation that exploit a quadratic approximation to the portfolio loss, such as the delta-gamma approximation. In the first method, we derive the characteristic function of the quadratic approximation and then use numerical transform inversion to approximate the portfolio loss distribution. Because the quadratic approximation may not always yield accurate VAR estimates, we also develop a low variance Monte Carlo method. This method uses the quadratic approximation to guide the selection of an effective importance sampling distribution that samples risk factors so that large losses occur more often. Variance is further reduced by combining the importance sampling with stratified sampling. Numerical results on a variety of test portfolios indicate that large variance reductions are typically obtained. Both methods developed in this paper overcome difficulties associated with VAR calculation with heavy-tailed risk factors. The Monte Carlo method also extends to the problem of estimating the conditional excess, sometimes known as the conditional VAR.  相似文献   
3.
LARGE DEVIATIONS IN MULTIFACTOR PORTFOLIO CREDIT RISK   总被引:2,自引:0,他引:2  
The measurement of portfolio credit risk focuses on rare but significant large-loss events. This paper investigates rare event asymptotics for the loss distribution in the widely used Gaussian copula model of portfolio credit risk. We establish logarithmic limits for the tail of the loss distribution in two limiting regimes. The first limit examines the tail of the loss distribution at increasingly high loss thresholds; the second limiting regime is based on letting the individual loss probabilities decrease toward zero. Both limits are also based on letting the size of the portfolio increase. Our analysis reveals a qualitative distinction between the two cases: in the rare-default regime, the tail of the loss distribution decreases exponentially, but in the large-threshold regime the decay is consistent with a power law. This indicates that the dependence between defaults imposed by the Gaussian copula is qualitatively different for portfolios of high-quality and lower-quality credits.  相似文献   
4.
This paper develops a variance reduction technique for Monte Carlo simulations of path-dependent options driven by high-dimensional Gaussian vectors. The method combines importance sampling based on a change of drift with stratified sampling along a small number of key dimensions. The change of drift is selected through a large deviations analysis and is shown to be optimal in an asymptotic sense. The drift selected has an interpretation as the path of the underlying state variables which maximizes the product of probability and payoff—the most important path. The directions used for stratified sampling are optimal for a quadratic approximation to the integrand or payoff function. Indeed, under differentiability assumptions our importance sampling method eliminates variability due to the linear part of the payoff function, and stratification eliminates much of the variability due to the quadratic part of the payoff. The two parts of the method are linked because the asymptotically optimal drift vector frequently provides a particularly effective direction for stratification. We illustrate the use of the method with path-dependent options, a stochastic volatility model, and interest rate derivatives. The method reveals novel features of the structure of their payoffs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号