首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   2篇
水利工程   5篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
排序方式: 共有5条查询结果,搜索用时 125 毫秒
1
1.
沉积物-水界面是物质参与环境地球化学循环和生物耦合的"热区",水动力条件是沉积物-水界面物质交换的关键影响因素。溶解氧作为常用的水质评价指标,对调节生物化学进程有重要作用,因此本文采用涡动相关法这种非侵入式通量测量技术开展室内试验研究,探究沉积物-水界面氧通量与水动力条件的响应关系。结果表明:随着水体紊动增加(采用Batchelor尺度表征),扩散边界层厚度减小,氧通量增大。分析室内试验和相关研究中水动力条件、扩散边界层厚度及氧通量的关系,发现扩散边界层厚度与Batchelor尺度呈正相关关系,拟合结果表明可以用Batchelor尺度近似表示扩散边界层厚度;氧通量与扩散边界层厚度呈负相关关系,且当扩散边界层厚度小于0.5 mm时,扩散边界层厚度变化对氧通量影响更强烈,当厚度大于0.5 mm后,氧通量基本保持稳定。  相似文献   
2.
深水水库通常存在季节性温度分层,由温度分层引起溶解氧等水质指标的分层还会诱发库区水环境水生态问题。当前在中短期时间尺度上对水库水温和溶解氧进行预报的研究相对较少,提高数学模型的模拟效率与精度对提升中短期预报效果至关重要。本文采用集合卡尔曼滤波算法作为同化方法,基于CE-QUAL-W2模型建立水库水动力水质数学模型,基于OpenACC的GPU并行方法提升模型计算效率,构建大黑汀水库水温与溶解氧的数据同化系统,在中短期时间尺度上开展水库水温与溶解氧高精度、高效率预报。预报结果符合水库水温与溶解氧的中短期变化规律,能够为大黑汀水库的供水与生态安全提供技术支撑。  相似文献   
3.
异齿裂腹鱼通过鱼道内流速障碍能力及行为   总被引:1,自引:0,他引:1  
鱼类通过流速障碍能力是鱼道设计的主要生态指标,目前国内外主要使用封闭游泳水槽进行鱼类各种游泳速度指标及游泳行为研究,其水流流态及鱼类游泳行为与鱼类通过鱼道的实际状态有较大的差距,有必要结合鱼类游泳速度指标来探索能够更加准确量化鱼类通过鱼道流场的游泳能力测试方法。首先,在封闭游泳水槽中通过速度递增法测得异齿裂腹鱼临界游泳速度(101.01±20.86 cm/s)和突进游泳速度(196.94±21.80 cm/s);然后,以临界游泳速度和藏木水电站鱼道竖缝流速(110.00 cm/s)为参考,通过在开放游泳水槽内加不同束窄梯形体,形成类竖缝式鱼道的鱼类自主游泳能力测试水槽,开展两种底坡条件下4级短竖缝(工况1和工况2竖缝流速为101.55±14.87 cm/s、114.63±24.28 cm/s,竖缝顺水流长度均为40 cm)和单级长竖缝(工况3竖缝流速为137.45±17.63 cm/s、竖缝顺水流长度为160 cm)下试验鱼通过流速障碍能力和行为研究。试验结果表明:工况1、工况2下试验鱼通过4级竖缝成功率分别为82.05%、84.62%,通过流速大于临界游泳速度的竖缝时,持续爆发游泳时间为0.52±0.34 s;工况3下93.33%试验鱼以209.43±21.76 cm/s游泳速度成功通过单级长竖缝;3种工况下试验鱼通过流速大于临界游泳速度的竖缝时,以与突进游泳速度无显著性差异(P0.05)的恒定游泳速度(214.01±30.64 cm/s)上溯。鱼类游泳轨迹与流场耦合分析表明:鱼类上溯所需时间及路径长度与其选择的游泳路径密切相关,试验鱼通过借助回流区同向水流推动,增加上溯效率。本文研究方法及研究结论可为鱼道设计、改造、评价提供依据。  相似文献   
4.
为了给沉积物-水界面通量的原位长效观测研究提供技术支撑,对水环境涡动相关技术的实现路径和应用方向进行了系统梳理。回顾了水环境涡动相关技术的发展历程并对比分析了其技术特征,从理论基础、系统构建和数据处理三方面介绍了该技术的实现方法,并总结了该技术的应用方向和目前面临的挑战。水环境涡动相关技术具有底质适用类型多样、不干扰沉积物结构、测量足迹大且时间精度高等特点,适用于河流、湖泊、水库、海湾及深海等环境的沉积物-水界面通量观测,能够为水体环境修复、生态系统代谢评估及潜流交换等研究提供支持。  相似文献   
5.
泄洪雾化是水利工程中常见的水气掺混现象,通常伴随着强风和强降雨,研究其形成机理与变化规律对保障设备、环境和人员的安全具有重要意义。基于水气两相流理论并采用有限单元法模拟了水布垭溢洪道的泄洪过程,从而分析了雾化的形成机理和时空变化规律,讨论了下泄流速和下泄流量对雾化的影响。结果表明:所采用的模型和算法能较好地模拟泄洪雾化过程;下泄水流经溢洪道相对负压区掺气形成高掺气水流,继而在水舌落水点附近受压力梯度驱动释放气体,该过程中产生的水雾和风动是泄洪雾化形成的重要原因。根据风速和雨强等参量的时空变化规律,泄洪雾化在时间上可分为起泄、波动、过渡和稳定四个阶段,在空间上可分为负压影响区、暴雨区、溅雨区、雾流降雨区、薄雾区和无影响区六个区域。随着下泄流速和下泄流量的增加,风速和水雾浓度递增,流体压强先减后增,可为比较不同泄洪工况下的雾化情况提供参考。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号