首页 | 本学科首页   官方微博 | 高级检索  
     


Approximate maximum likelihood estimation for stochastic differential equations with random effects in the drift and the diffusion
Authors:Maud?Delattre  author-information"  >  author-information__contact u-icon-before"  >  mailto:maud.delattre@agroparistech.fr"   title="  maud.delattre@agroparistech.fr"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Valentine?Genon-Catalot,Catherine?Larédo
Affiliation:1.UMR MIA-Paris, AgroParisTech, INRA,Université Paris-Saclay,Paris,France;2.UMR CNRS 8145, Laboratoire MAP5, Université Paris Descartes, Sorbonne Paris Cité,Paris,France;3.INRA, MaIAGE,Jouy-en-Josas,France;4.LPMA, Paris Diderot, Sorbonne Paris Cité,Paris,France
Abstract:Consider N independent stochastic processes ((X_i(t), tin [0,T])), (i=1,ldots , N), defined by a stochastic differential equation with random effects where the drift term depends linearly on a random vector (Phi _i) and the diffusion coefficient depends on another linear random effect (Psi _i). For these effects, we consider a joint parametric distribution. We propose and study two approximate likelihoods for estimating the parameters of this joint distribution based on discrete observations of the processes on a fixed time interval. Consistent and (sqrt{N})-asymptotically Gaussian estimators are obtained when both the number of individuals and the number of observations per individual tend to infinity. The estimation methods are investigated on simulated data and show good performances.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号