首页 | 本学科首页   官方微博 | 高级检索  
     


Analytical quasi maximum likelihood inference in multivariate volatility models
Authors:Christian M. Hafner  Helmut Herwartz
Affiliation:1.Institut de Statistique,Université Catholique de Louvain,Louvain-la-Neuve,Belgium;2.Institut für Statistik und ?konometrie,Christian Albrechts Universit?t zu Kiel,Kiel,Germany
Abstract:
Quasi maximum likelihood estimation and inference in multivariate volatility models remains a challenging computational task if, for example, the dimension of the parameter space is high. One of the reasons is that typically numerical procedures are used to compute the score and the Hessian, and often they are numerically unstable. We provide analytical formulae for the score and the Hessian for a variety of multivariate GARCH models including the Vec and BEKK specifications as well as the recent dynamic conditional correlation model. By means of a Monte Carlo investigation of the BEKK–GARCH model we illustrate that employing analytical derivatives for inference is clearly preferable to numerical methods.
Keywords:Multivariate GARCH models  Quasi maximum likelihood
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号