首页 | 本学科首页   官方微博 | 高级检索  
     


Methods for the Analysis of Explanatory Linear Regression Models with Missing Data Not at Random
Authors:Navarro Pastor  José Blas
Affiliation:(1) Departament de Psicobiologia i Metodologia, Universitat Autónoma de Barcelona, Edifici B, 08193 Bellaterra, Spain
Abstract:Since the work of Little and Rubin (1987) not substantial advances in the analysisof explanatory regression models for incomplete data with missing not at randomhave been achieved, mainly due to the difficulty of verifying the randomness ofthe unknown data. In practice, the analysis of nonrandom missing data is donewith techniques designed for datasets with random or completely random missingdata, as complete case analysis, mean imputation, regression imputation, maximumlikelihood or multiple imputation. However, the data conditions required to minimizethe bias derived from an incorrect analysis have not been fully determined. In thepresent work, several Monte Carlo simulations have been carried out to establishthe best strategy of analysis for random missing data applicable in datasets withnonrandom missing data. The factors involved in simulations are sample size,percentage of missing data, predictive power of the imputation model and existenceof interaction between predictors. The results show that the smallest bias is obtainedwith maximum likelihood and multiple imputation techniques, although with lowpercentages of missing data, absence of interaction and high predictive power ofthe imputation model (frequent data structures in research on child and adolescentpsychopathology) acceptable results are obtained with the simplest regression imputation.
Keywords:nonrandom missing data  regression analysis  incomplete maximum likelihood estimation  multiple imputation  Monte Carlo simulation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号