首页 | 本学科首页   官方微博 | 高级检索  
     

深度学习的金融实证应用:动态、贡献与展望北大核心CSSCISSCI
作者姓名:苏治  卢曼  李德轩
作者单位:1.中央财经大学100081;2.中国人民大学国际货币研究所100872;3.中国传媒大学100024;
摘    要:随着智能时代来临以及金融数据分析需求提升,深度学习已经成为金融领域中的应用前沿,特别是在预测金融市场运动、处理文本信息、改进交易策略方面。深度学习包含深度神经网络、深度信念网络等多种结构,通过分层结构提取深层特征,强化重要因素、过滤噪音,对提升预测准确率具有重要意义;其应用及由此衍生的优化技术改进了金融领域预测分析方法,促使实证研究范式从线性向非线性转变、从关注参数显著性向关注模型结构和动态特征转变,同时为丰富金融经济理论做出贡献。构建结构合适、效果稳健的模型以捕捉金融数据有效特征并进行经济含义阐释是应用深度学习方法的难点与重点;未来研究可以从挖掘深层经济意义、提炼一般性预测分析框架、探索其对异质信息的适用性等角度展开。

关 键 词:深度学习  金融市场预测  文本挖掘  深度神经网络  深度信念网络
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号