首页 | 本学科首页   官方微博 | 高级检索  
     


Risk parity portfolio optimization under a Markov regime-switching framework
Authors:Giorgio Costa
Affiliation:Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, Canada M5S 3G8
Abstract:We formulate and solve a risk parity optimization problem under a Markov regime-switching framework to improve parameter estimation and to systematically mitigate the sensitivity of optimal portfolios to estimation error. A regime-switching factor model of returns is introduced to account for the abrupt changes in the behaviour of economic time series associated with financial cycles. This model incorporates market dynamics in an effort to improve parameter estimation. We proceed to use this model for risk parity optimization and also consider the construction of a robust version of the risk parity optimization by introducing uncertainty structures to the estimated market parameters. We test our model by constructing a regime-switching risk parity portfolio based on the Fama–French three-factor model. The out-of-sample computational results show that a regime-switching risk parity portfolio can consistently outperform its nominal counterpart, maintaining a similar ex post level of risk while delivering higher-than-nominal returns over a long-term investment horizon. Moreover, we present a dynamic portfolio rebalancing policy that further magnifies the benefits of a regime-switching portfolio.
Keywords:Risk parity  Asset allocation  Factor model  Markov regime switching  Robust optimization  Uncertainty
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号