首页 | 本学科首页   官方微博 | 高级检索  
     

铁路行包运量预测模型研究
引用本文:王鹏. 铁路行包运量预测模型研究[J]. 铁道运输与经济, 2010, 32(1)
作者姓名:王鹏
作者单位:中国铁道科学研究院,运输及经济研究所,北京,100081
摘    要:
铁路行包运量预测是以运输需求和内部供给为导向,综合考虑各种影响因素,对行包运量现状和发展的正确把握.探讨利用人工神经网络结合主成分分析的方法,建立铁路行包运量预测模型,解释并预测行包专列开行后铁路行包运量的增长趋势.实例分析的仿真结果表明,采用主成分分析法的广义回归神经网络模型结构简洁、预测精度高、收敛速度快,对相关铁路部门和企业的决策具有参考意义.

关 键 词:铁路行包运输  主成分  广义回归神经网络  运量预测

Study on Prediction Model for Railway Baggage and Parcel Traffic Volume
WANG Peng. Study on Prediction Model for Railway Baggage and Parcel Traffic Volume[J]. Rail Way Transport and Economy, 2010, 32(1)
Authors:WANG Peng
Affiliation:WANG Peng(Transport , Economics Research Institute,China Academy of Railway Sciences,Beijing 100081,China)
Abstract:
The prediction for railway baggage and parcel traffic volume, which is oriented by transportation demand and internal supply,is the accurate grasp for the current situation and development of baggage and parcel traffic after comprehensively considering the various influencing factors.The artificial neural network combined with principal component analysis is utilized to build the prediction model for railway baggage and parcel traffic volume. The increasing trend of railway baggage and parcel traffic after ...
Keywords:Railway Baggage and Parcel Transportation  Principal Component  Generalized Regression Neural Network  Traffic Volume Prediction  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号