(1) Department of Statistics, University of Washington, Seattle, WA 98195, USA;(2) Department of Statistics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
Abstract:
Multivariate one-sided hypothesis-testing problems are very common in clinical trials with multiple endpoints. The likelihood ratio test (LRT) and union-intersection test (UIT) are widely used for testing such problems. It is argued that, for many important multivariate one-sided testing problems, the LRT and UIT fail to adapt to the presence of subregions of varying dimensionalities on the boundary of the null parameter space and thus give undesirable results. Several improved tests are proposed that do adapt to the varying dimensionalities and hence reflect the evidence provided by the data more accurately than the LRT and UIT. Moreover, the proposed tests are often less biased and more powerful than the LRT and UIT.