首页 | 本学科首页   官方微博 | 高级检索  
     


Holt’s exponential smoothing and neural network models for forecasting interval-valued time series
Authors:André   Luis Santiago Maia,Francisco de A.T. de Carvalho
Affiliation:
  • a Coordenação Geral de Estudos Econômicos e Populacionais, Fundação Joaquim Nabuco, R. Dois Irmãos, 92 - Apipucos, CEP 52071-440, Recife/PE, Brazil
  • b Centro de Informática, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n - Cidade Universitária, CEP 50740-540, Recife/PE, Brazil
  • Abstract:Interval-valued time series are interval-valued data that are collected in a chronological sequence over time. This paper introduces three approaches to forecasting interval-valued time series. The first two approaches are based on multilayer perceptron (MLP) neural networks and Holt’s exponential smoothing methods, respectively. In Holt’s method for interval-valued time series, the smoothing parameters are estimated by using techniques for non-linear optimization problems with bound constraints. The third approach is based on a hybrid methodology that combines the MLP and Holt models. The practicality of the methods is demonstrated through simulation studies and applications using real interval-valued stock market time series.
    Keywords:Symbolic data analysis   Exponential smoothing   Neural networks   Hybrid forecasting models   Interval-valued data
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号