首页 | 本学科首页   官方微博 | 高级检索  
     


Estimation of Discrete Choice Dynamic Programming Models
Authors:Hiroyuki Kasahara  Katsumi Shimotsu
Affiliation:1. University of British Columbia;2. University of Tokyo
Abstract:This study reviews estimation methods for the infinite horizon discrete choice dynamic programming models and conducts Monte Carlo experiments. We consider: the maximum likelihood estimator (MLE), the two‐step conditional choice probabilities estimator, sequential estimators based on policy iterations mapping under finite dependence, and sequential estimators based on value iteration mappings. Our simulation result shows that the estimation performance of the sequential estimators based on policy iterations and value iteration mappings is largely comparable to the MLE, while they achieve substantial computation gains over the MLE by a factor of 100 for a model with a moderately large state space.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号