首页 | 本学科首页   官方微博 | 高级检索  
     

基于EMD-SE-LSTM模型的股指日内已实现波动率预测──以中证500指数为例
作者姓名:刘传  陈彦晖
作者单位:上海海事大学 经济管理学院,上海 201306
摘    要:由于股指波动率具有非平稳、高嘈杂、非线性等特征,而传统的预测模型在建模时要求数据平稳、线性或近似线性,所以很难精准预测股指波动率。为提高股指波动率的预测效果,采用经验模态分解(EMD)、样本熵(SE)和长短期记忆网络(LSTM)构建的模型对股指日内已实现波动率进行预测。以中证500指数为例,经过EMD分解得到一系列分量,再根据分量的样本熵大小进行重构,最后利用LSTM对重构后的各序列进行预测。结果表明,EMD算法对LSTM模型的预测精度有很大的提升,相较于传统模型,EMD-SE-LSTM模型在预测股指波动率时精度更高,拟合优度更好。

关 键 词:经验模态分解(EMD)  长短期记忆网络(LSTM)  已实现波动率  股票指数
点击此处可从《科技和产业》浏览原始摘要信息
点击此处可从《科技和产业》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号