首页 | 本学科首页   官方微博 | 高级检索  
     


Robustness and inference in nonparametric partial frontier modeling
Authors:Abdelaati Daouia,Irè  ne Gijbels
Affiliation:
  • a Toulouse School of Economics (GREMAQ), University of Toulouse, France
  • b Department of Mathematics and Leuven Statistics Research Center (LStat), Katholieke Universiteit Leuven, Belgium
  • Abstract:A major aim in recent nonparametric frontier modeling is to estimate a partial frontier well inside the sample of production units but near the optimal boundary. Two concepts of partial boundaries of the production set have been proposed: an expected maximum output frontier of order m=1,2,… and a conditional quantile-type frontier of order α∈]0,1]. In this paper, we answer the important question of how the two families are linked. For each m, we specify the order α for which both partial production frontiers can be compared. We show that even one perturbation in data is sufficient for breakdown of the nonparametric order-m frontiers, whereas the global robustness of the order-α frontiers attains a higher breakdown value. Nevertheless, once the α frontiers break down, they become less resistant to outliers than the order-m frontiers. Moreover, the m frontiers have the advantage to be statistically more efficient. Based on these findings, we suggest a methodology for identifying outlying data points. We establish some asymptotic results, contributing to important gaps in the literature. The theoretical findings are illustrated via simulations and real data.
    Keywords:C13   C14   D20
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号