首页 | 本学科首页   官方微博 | 高级检索  
     

基于多模型组合和EIS的锂电池SOH和URL预测
作者姓名:常伟  胡志超  潘多昭
作者单位:南通乐创新能源有限公司,江苏 南通 200233
摘    要:电池健康状态(state of health, SOH)和剩余使用寿命(remaining useful life, RUL)是评价电池健康程度和剩余寿命的重要技术指标。SOH和RUL的估计是电池管理系统的重要组成部分,是实现电池管理系统智能监控和科学运营的基础。电池电化学阻抗谱(electrochemical impedance spectroscopy,EIS)是一种用于表征电池内部电化学过程的测试方法,它具备精度高和非侵入性损害等优点。多种研究表明,电池阻抗谱EIS与电池的SOH和RUL存在一些内在的联系,因此成为电化学领域的研究热点。基于EIS预测SOH和RUL,传统机器学习方法比较成熟,但预测精度和稳定性仍有局限,难以完全挖掘电池衰减规律。因此,需要与深度学习等方法相结合才能提高预测性能。将降维模型和多种深度学习模型引入SOH和RUL预测领域,并对模型进行有效组合,取得了很好的效果。将EIS所有频率对应的实部和虚部数据依次排列作为频率特征,首先使用主成分分析(principle component analysis,PCA)模型对EIS值进行降维,提炼出10个精炼的主成分,然后使用卷积神经网络(convolution neural network,CNN)模型提取EIS的空间特征,使用双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)模型提取EIS时间序列变化规律,使用注意力(attention)机制进一步选取EIS数据的时空特征中的重要部分,共同预测SOH和RUL。在测试数据上进行实验表明,SOH预测的均方误差(root mean square error, RMSE)达到0.146 8,RUL预测的均方误差达到2.614 5,效果均好于传统的方法。

关 键 词:阻抗谱  EIS  SOH  RUL  PCA  CNN  BiLSTM
点击此处可从《科技和产业》浏览原始摘要信息
点击此处可从《科技和产业》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号