首页 | 本学科首页   官方微博 | 高级检索  
     


A stochastic frontier model with correction for sample selection
Authors:William Greene
Affiliation:(1) Department of Economics, Stern School of Business, New York University, 44 West 4th St., Rm. 7-78, New York, NY 10012, USA
Abstract:
Heckman’s (Ann Econ Soc Meas 4(5), 475–492, 1976; Econometrica 47, 153–161, 1979) sample selection model has been employed in three decades of applications of linear regression studies. This paper builds on this framework to obtain a sample selection correction for the stochastic frontier model. We first show a surprisingly simple way to estimate the familiar normal-half normal stochastic frontier model using maximum simulated likelihood. We then extend the technique to a stochastic frontier model with sample selection. In an application that seems superficially obvious, the method is used to revisit the World Health Organization data (WHO in The World Health Report, WHO, Geneva 2000; Tandon et al. in Measuring the overall health system performance for 191 countries, World Health Organization, 2000) where the sample partitioning is based on OECD membership. The original study pooled all 191 countries. The OECD members appear to be discretely different from the rest of the sample. We examine the difference in a sample selection framework.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号