首页 | 本学科首页   官方微博 | 高级检索  
     


A Skew‐normal copula‐driven GLMM
Authors:Kalyan Das  Mohamad Elmasri  Arusharka Sen
Affiliation:1. Department of Statistics University of Calcutta 35, Kolkata, India;2. Department of Mathematics and Statistics McGill University Burnside Hall, QC, Canada;3. S‐LB 921‐23 J.W. McConnell Building, 1400 De Maisonneuve W. Montreal, QC, Canada
Abstract:This paper presents a method for fitting a copula‐driven generalized linear mixed models. For added flexibility, the skew‐normal copula is adopted for fitting. The correlation matrix of the skew‐normal copula is used to capture the dependence structure within units, while the fixed and random effects coefficients are estimated through the mean of the copula. For estimation, a Monte Carlo expectation–maximization algorithm is developed. Simulations are shown alongside a real data example from the Framingham Heart Study.
Keywords:EM algorithm  Gaussian copula  generalized linear mixed models  Monte Carlo  skew‐normal.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号