首页 | 本学科首页   官方微博 | 高级检索  
     

改进的YOLOv3-Tiny网络在风机叶片损伤检测中的应用
引用本文:武宇平,刘海旭,吴劲芳,贾洪岩,刁 嘉,朱董军. 改进的YOLOv3-Tiny网络在风机叶片损伤检测中的应用[J]. 河北工业科技, 2021, 38(5): 401-408
作者姓名:武宇平  刘海旭  吴劲芳  贾洪岩  刁 嘉  朱董军
作者单位:国网新源张家口风光储示范电站有限公司设备检修中心,河北张家口 075000
基金项目:北京科技大学与国网新源张家口风光储示范电站有限公司合作研究及应用项目(SGJBXY00SJJS2000087)
摘    要:为了解决YOLOv3-Tiny对无人机采集的风机叶片图像损伤检测精度不高的问题,提出一种基于深度学习的风机叶片图像损伤检测方法。首先提出一种跨越式特征联合网络结构,由卷积层和拼接层构成,将不同深度的特征信息进行融合再学习,提取目标多层级特征信息;其次引入Inception模块结构,其中4个平行通道的多个卷积核对输入的特征图进行组合和压缩,在减少网络的学习参数的同时更好地表征图像特征信息,提高小目标的检测精度。实验表明,改进后算法的检测精度提高了2.69%,在自制的数据集中mAP可以达到88.58%,并且模型的参数缩小了4倍。因此,改进的方法比传统的YOLOv3-Tiny网络具有更好的检测效果。研究结果可为基于图像的损伤检测和风机叶片损伤智能识别提供参考。

关 键 词:计算机神经网络  缺陷检测  深度学习  风机叶片  YOLOv3-Tiny
收稿时间:2021-04-08
修稿时间:2021-08-13

Application of improved YOLOv3-Tiny network in fan blade damage detection
WU Yuping,LIU Haixu,WU Jinfang,JIA Hongyan,DIAO Ji,ZHU Dongjun. Application of improved YOLOv3-Tiny network in fan blade damage detection[J]. Hebei Journal of Industrial Science & Technology, 2021, 38(5): 401-408
Authors:WU Yuping  LIU Haixu  WU Jinfang  JIA Hongyan  DIAO Ji  ZHU Dongjun
Abstract:In order to solve the low precision of damage detection using YOLOv3-Tiny network for UAV collected fan blade images,a deep learning-based damage detection algorithm was proposed.Firstly,a leaping feature joint network structure was proposed,which was composed of a convolutional layer and a splicing layer.The feature information of different depths was fused and learned to extract the information of the target multi-level feature.Secondly,the inception module structure was introduced,and the input feature maps were compressed by multiple convolution kernels with 4 parallel channels,which reduced the learning parameters of the network and better characterized the image feature information.Then the detection accuracy of small targets was improved.Experiments show that the detection accuracy of the improved algorithm is increased by 2.69%,the mAP reaches 88.58% in the self-made dataset,and the parameters of the model are reduced by 4 times.The detect precision of this method is better than that of YOLOv3-Tiny network in the task of wind turbine blade damage detection.The results provide reference for image-based damage detection and intelligent identification work of fan blade damage.
Keywords:computer neural network   defect detection   deep learning   fan blade   YOLOv3-Tiny
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《河北工业科技》浏览原始摘要信息
点击此处可从《河北工业科技》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号