首页 | 本学科首页   官方微博 | 高级检索  
     


Supply chain planning of vaccine and pharmaceutical clusters under uncertainty: The case of COVID-19
Affiliation:1. Department of Electrical and Computer Engineering, George Washington University, Washington D.C, USA;2. Division of Engineering Management and Decision Sciences, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar;3. Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran
Abstract:As an abrupt epidemic occurs, healthcare systems are shocked by the surge in the number of susceptible patients' demands, and decision-makers mostly rely on their frame of reference for urgent decision-making. Many reports have declared the COVID-19 impediments to trading and global economic growth. This study aims to provide a mathematical model to support pharmaceutical supply chain planning during the COVID-19 epidemic. Additionally, it aims to offer new insights into hospital supply chain problems by unifying cold and non-cold chains and considering a wide range of pharmaceuticals and vaccines. This approach is unprecedented and includes an analysis of various pharmaceutical features such as temperature, shelf life, priority, and clustering. To propose a model for planning the pharmaceutical supply chains, a mixed-integer linear programming (MILP) model is used for a four-echelon supply chain design. This model aims to minimize the costs involved in the pharmaceutical supply chain by maintaining an acceptable service level. Also, this paper considers uncertainty as an intrinsic part of the problem and addresses it through the wait-and-see method. Furthermore, an unexplored unsupervised learning method in the realm of supply chain planning has been used to cluster the pharmaceuticals and the vaccines and its merits and drawbacks are proposed. A case of Tehran hospitals with real data has been used to show the model's capabilities, as well. Based on the obtained results, the proposed approach is able to reach the optimum service level in the COVID conditions while maintaining a reduced cost. The experiment illustrates that the hospitals' adjacency and emergency orders alleviated the service level significantly. The proposed MILP model has proven to be efficient in providing a practical intuition for decision-makers. The clustering technique reduced the size of the problem and the time required to solve the model considerably.
Keywords:Pharmaceutical supply chain  Vaccine supply chain  Mathematical optimization  Stochastic programming  K-means clustering  COVID-19 epidemic  Cold chain
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号