首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进ERFNet的无人直升机着舰环境语义分割
引用本文:刘 健,张祥甫,于志军,吴中红. 基于改进ERFNet的无人直升机着舰环境语义分割[J]. 国际商务研究, 2020, 0(1)
作者姓名:刘 健  张祥甫  于志军  吴中红
作者单位:海军工程大学 兵器工程学院,武汉 430000,海军工程大学 兵器工程学院,武汉 430000,解放军91206部队 教研部,山东 青岛 266109,海军工程大学 兵器工程学院,武汉 430000
基金项目:国家自然科学基金资助项目(61773395)
摘    要:为增强无人直升机对着舰环境的感知理解,促进其安全高效地实现自主着舰,将ERFNet网络模型应用于无人直升机着舰场景语义分割任务中。首先,结合非对称残差模块和弱瓶颈模块对ERFNet网络模型进行改进,提高运行速度、减少精度损失;其次,利用MultiGenCreator和VegaPrime等技术开发无人机自主着舰仿真系统,并建立无人机自主着舰场景数据集;最后,采用PyTorch深度学习框架实现网络模型,采取模型再训练方法对网络进行学习和训练。实验结果表明,所提网络综合优势明显,平均交并比(Mean Intersection over Union,MIOU)达到76.35%,前向传播时间为22.37 ms。

关 键 词:无人直升机;自主着舰;环境感知;语义分割;深度学习;扩张卷积

Semantic segmentation of landing environment for unmanned helicopter based on improved ERFNet
LIU Jian,ZHANG Xiangfu,YU Zhijun and WU Zhonghong. Semantic segmentation of landing environment for unmanned helicopter based on improved ERFNet[J]. International Business Research, 2020, 0(1)
Authors:LIU Jian  ZHANG Xiangfu  YU Zhijun  WU Zhonghong
Affiliation:College of Weapons Engineering,Naval University of Engineering,Wuhan 430000,China,College of Weapons Engineering,Naval University of Engineering,Wuhan 430000,China,Teaching and Research Department,Unit 91206 of PLA,Qingdao 266109,China and College of Weapons Engineering,Naval University of Engineering,Wuhan 430000,China
Abstract:
Keywords:unmanned helicopter  automatic landing on ship  environment perception  semantic segmentation  deep learning  dilated convolution
点击此处可从《国际商务研究》浏览原始摘要信息
点击此处可从《国际商务研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号