首页 | 本学科首页   官方微博 | 高级检索  
     


Two-stage non Gaussian QML estimation of GARCH models and testing the efficiency of the Gaussian QMLE
Authors:Christian Francq,Guillaume Lepage,Jean-Michel Zakoï  an
Affiliation:aUniversité Lille 3 (EQUIPPE), BP 60149, 59653 Villeneuve d’Ascq Cedex, France;bCREST, 15 boulevard Gabriel Péri, 92245 Malakoff Cedex, France
Abstract:
In generalized autoregressive conditional heteroskedastic (GARCH) models, the standard identifiability assumption that the variance of the iid process is equal to 1 can be replaced by an alternative moment assumption. We show that, for estimating the original specification based on the standard identifiability assumption, efficiency gains can be expected from using a quasi-maximum likelihood (QML) estimator based on a non Gaussian density and a reparameterization based on an alternative identifiability assumption. A test allowing to determine whether a reparameterization is needed, that is, whether the more efficient QMLE is obtained with a non Gaussian density, is proposed.
Keywords:JEL classification: C12   C13   C22
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号