首页 | 本学科首页   官方微博 | 高级检索  
     

油浸式变压器故障在线诊断方法研究
引用本文:贾红红,郑一平. 油浸式变压器故障在线诊断方法研究[J]. 嘉兴学院学报, 2008, 20(6): 99-104
作者姓名:贾红红  郑一平
作者单位:金华职业技术学院,浙江金华,321018
摘    要:根据各溶解气体的在线监测数据,采用灰色GM(1,1)和PNN融合技术进行在线故障诊断.先通过GM(1,1)预测模型预测未来时刻变压器中矿物绝缘油在电和热的作用下,分解产生的氢、甲烷、乙烷、乙烯及乙炔5种气体溶解浓度,并将预测结果作为概率神经网络故障诊断的输入利用PNN进行变压器故障诊断.实例表明,该方法能够诊断变压器在未来时刻的绝缘状况,并能满足工程实际需要.

关 键 词:在线故障诊断  概率神经网络(PNN)  GM(1,  1)

Research on the Online Fault Diagnosis against Oil-Immersed Transformer Based on PNN and GM(1,1)
JIA Hong-hong,ZHENG Yi-ping. Research on the Online Fault Diagnosis against Oil-Immersed Transformer Based on PNN and GM(1,1)[J]. Journal of Jiaxing College, 2008, 20(6): 99-104
Authors:JIA Hong-hong  ZHENG Yi-ping
Affiliation:JIA Hong - hong, ZHENG Yi - ping ( Jinhua Vocational and Technical College, Jinhua, Zhejiang 321018 )
Abstract:Based on the online inspection data of various soluble gases,an integrated technology of GM(1,1) and PNN is introduce into the online fault diagnosis.Firstly,GM(1,1) forecasts the concentration of H2,CH4,C2H6,C2H2 and C2H4,which are produced by decomposing the mineral insulative oil under the effect of electricity and heat.At the same time,the forecasting results are chosen as the input data for the fault diagnosis through the PNN.The actual example shows that the method can be used to diagnose the insulation condition of transformer in the future time and can also meet the real project requirements.
Keywords:online fault diagnosis  Probabilistic Neural Network(PNN)  GM(1  1)  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号