首页 | 本学科首页   官方微博 | 高级检索  
     

类别不平衡条件下的雷达信号识别
作者姓名:孙艺聪  田润澜  王晓峰  田维群
作者单位:空军航空大学 航空作战勤务学院,长春 130022
摘    要:在实际电子侦察过程中,由于各种原因,侦收到的不同类型信号数量相差很大,类别之间严重不平衡,常规方法在这种数据集下训练得到的分类器不能有效识别少数类。针对这一问题,首先采用栈式自编码器对中频数据进行降维和特征提取;然后在降维后的特征空间内通过多种过采样方法生成新的少数类样本,使数据集重新平衡,并利用再平衡后的数据集训练支持向量机分类器;最后采用F分数和受试者工作特征(Receiver Operating Characteristic,ROC)曲线两种评价方法对分类效果进行评价。实验结果表明,通过过采样处理,分类器对少数类的识别性能有所提升。

关 键 词:雷达信号识别  类不平衡  自编码器  支持向量机
点击此处可从《国际商务研究》浏览原始摘要信息
点击此处可从《国际商务研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号