首页 | 本学科首页   官方微博 | 高级检索  
     

基于核Fisher鉴别分析的网络入侵检测算法
引用本文:张力杰. 基于核Fisher鉴别分析的网络入侵检测算法[J]. 适用技术市场, 2009, 0(12): 178-179
作者姓名:张力杰
作者单位:江汉大学文理学院,湖北武汉430056
摘    要:提出了一种将核Fisher鉴别分析特征抽取与多分类支持向量机算法结合的网络入侵检测技术,扩展了二分类支持向量机.利用经过核Fisher鉴别分析特征抽取后的训练数据构造优化的决策树,从而实现支持向量机的多分类。实验结果表明该算法能够提高检测正确率,同时降低训练时间,取得了良好的效果。

关 键 词:核Fisher鉴别分析  支持向量机  网络  入侵检测

Network Intrusion Detection Algorithm Based on Kernel Fisher Diagnose Analysis
Abstract:This paper presents a nuclear Fisher discriminant analysis feature extraction and multi-classification support vector machine algorithm combining network intrusion detection technology, the expansion of the two classification support vector machine, to use the nuclear Fisher discriminant analysis feature extraction of training data structure after the optimization the decision tree, support vector machine in order to achieve the multi-classification. Experimental results show that the algorithm be able to improve detection accuracy and reduce training time, and achieved good results.
Keywords:KDFA   support vector machine   network   intrusion detection
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号