首页 | 本学科首页   官方微博 | 高级检索  
     


Generalized gauss-chebyshev inequalities for unimodal distributions
Authors:Thomas Sellke
Affiliation:(1) Department of Statistics, Mathematical Sciences Building, Purdue University, 47907-1399 West Lafayette, IN, USA
Abstract:
Letg be an even function on ℝ which is nondecreasing in |x|. Letk be a positive constant. Sharp inequalities relatingP(|X|≥k) toEg(X) are obtained for random variablesX which are unimodal with mode 0, and for random variablesX which are unimodal with unspecified mode. The bounds in the mode 0 case generalize an inequality due to Gauss (1823), whereg(x)=x 2. The bounds in the second case generalize inequalities of Vysochanskiĭ and Petunin (1980, 1983) and Dharmadhikari and Joag-dev (1985).
Keywords:Convexity  Gauss inequality  Chebyshev inequality  Vysochanskiĭ  -Petunin inequality  von Mises inequality  unimodality
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号